概述
1. 什么是pcm?
pcm(Pulse-code modulation)脉冲编码调制,是将模拟信号转化为数字信号的一种方法。声音的转化的过程为,先对连续的模拟信号按照固定频率周期性采样,将采样到的数据按照一定的精度进行量化,量化后的信号和采样后的信号差值叫做量化误差,将量化后的数据进行最后的编码存储,最终模拟信号变化为数字信号。
2. pcm的两个重要属性
a. 采样率: 单位时间内采样的次数,采样频率越高越高,
b. 采样位数: 一个采样信号的位数,也是对采样精度的变现。
对于人类而言,能接受声音的频率范围是20Hz-20KHz, 所以采样的频率44.1KHz 以及16bit的采样位数就可以有很好的保真能力(CD格式的采样率和采样位数)。
图1-1 声音的录音和播放过程
数据结构
在ALSA架构下,pcm也被称为设备,所谓的逻辑设备。在linux系统中使用snd_pcm结构表示一个pcm设备。
struct snd_pcm { struct snd_card *card; struct list_head list; int device; /* device number */ unsigned int info_flags; unsigned short dev_class; unsigned short dev_subclass; char id[64]; char name[80]; struct snd_pcm_str streams[2]; struct mutex open_mutex; wait_queue_head_t open_wait; void *private_data; void (*private_free) (struct snd_pcm *pcm); struct device *dev; /* actual hw device this belongs to */ bool internal; /* pcm is for internal use only */ bool nonatomic; /* whole PCM operations are in non-atomic context */ #if defined(CONFIG_SND_PCM_OSS) || defined(CONFIG_SND_PCM_OSS_MODULE) struct snd_pcm_oss oss; #endif };.card: 此pcm设备所属的card。
.list: 用于将pcm设备链接起来,最终所有的pcm设备会放入snd_pcm_devices链表中。
.device: 该pcm的索引号。
.id: 该pcm的标识。
.streams: 指向pcm的capture和playback stream,通常0代表playback,1代表capture。
通常一个pcm下会有两个stream, 分别为capture stream和playback stream,在每个stream下又会存在多个substream。
linux系统中使用snd_pcm_str定义stream, 使用snd_pcm_substream定义substream。
struct snd_pcm_str { int stream; /* stream (direction) */ struct snd_pcm *pcm; /* -- substreams -- */ unsigned int substream_count; unsigned int substream_opened; struct snd_pcm_substream *substream; };.stream: 当前stream的方向,capture or playback。
.pcm: 所属的pcm。
.substream_count: 该stream下substream的个数。
.substream_opened: 该stream下open的substream个数。
.substream: 该stream下的substream.
struct snd_pcm_substream { struct snd_pcm *pcm; struct snd_pcm_str *pstr; void *private_data; /* copied from pcm->private_data */ int number; char name[32]; /* substream name */ int stream; /* stream (direction) */ struct pm_qos_request latency_pm_qos_req; /* pm_qos request */ size_t buffer_bytes_max; /* limit ring buffer size */ struct snd_dma_buffer dma_buffer; size_t dma_max; /* -- hardware operations -- */ const struct snd_pcm_ops *ops; /* -- runtime information -- */ struct snd_pcm_runtime *runtime; /* -- timer section -- */ struct snd_timer *timer; /* timer */ unsigned timer_running: 1; /* time is running */ /* -- next substream -- */ struct snd_pcm_substream *next; /* -- linked substreams -- */ struct list_head link_list; /* linked list member */ struct snd_pcm_group self_group; /* fake group for non linked substream (with substream lock inside) */ struct snd_pcm_group *group; /* pointer to current group */ /* -- assigned files -- */ void *file; int ref_count; atomic_t mmap_count; unsigned int f_flags; void (*pcm_release)(struct snd_pcm_substream *); struct pid *pid; /* misc flags */ unsigned int hw_opened: 1; };.pcm: 所属的pcm。
.pstr: 所属的stream。
.id: 代表的该stream下第几个substream,也就是序号。
.stream: 该substream的方向流,是palyback or capture。
.name: 该substrem的名字。
.ops: 硬件操作函数集合。
.runtime: 运行时的pcm的一些信息。
.next: 用于链接下一个sub stream。
下图是对这几个结构体之间的简单表述。
pcm设备的创建
创建一个pcm设备的实例,使用snd_pcm_new函数。
/** * snd_pcm_new - create a new PCM instance * @card: the card instance * @id: the id string * @device: the device index (zero based) * @playback_count: the number of substreams for playback * @capture_count: the number of substreams for capture * @rpcm: the pointer to store the new pcm instance * * Creates a new PCM instance. * * The pcm operators have to be set afterwards to the new instance * via snd_pcm_set_ops(). * * Return: Zero if successful, or a negative error code on failure. */ int snd_pcm_new(struct snd_card *card, const char *id, int device, int playback_count, int capture_count, struct snd_pcm **rpcm) { return _snd_pcm_new(card, id, device, playback_count, capture_count, false, rpcm); }此函数会传入六个参数,其中该函数的注释写的很清楚,不做过多解释。函数最终会返回rpcm参数。
static int _snd_pcm_new(struct snd_card *card, const char *id, int device, int playback_count, int capture_count, bool internal, struct snd_pcm **rpcm) { struct snd_pcm *pcm; int err; static struct snd_device_ops ops = { .dev_free = snd_pcm_dev_free, .dev_register = snd_pcm_dev_register, .dev_disconnect = snd_pcm_dev_disconnect, }; if (snd_BUG_ON(!card)) return -ENXIO; if (rpcm) *rpcm = NULL; pcm = kzalloc(sizeof(*pcm), GFP_KERNEL); if (pcm == NULL) { dev_err(card->dev, "Cannot allocate PCM\n"); return -ENOMEM; } pcm->card = card; pcm->device = device; pcm->internal = internal; if (id) strlcpy(pcm->id, id, sizeof(pcm->id)); if ((err = snd_pcm_new_stream(pcm, SNDRV_PCM_STREAM_PLAYBACK, playback_count)) < 0) { snd_pcm_free(pcm); return err; } if ((err = snd_pcm_new_stream(pcm, SNDRV_PCM_STREAM_CAPTURE, capture_count)) < 0) { snd_pcm_free(pcm); return err; } mutex_init(&pcm->open_mutex); init_waitqueue_head(&pcm->open_wait); if ((err = snd_device_new(card, SNDRV_DEV_PCM, pcm, &ops)) < 0) { snd_pcm_free(pcm); return err; } if (rpcm) *rpcm = pcm; return 0; }1. 分配一个snd_pcm结构体。
2. 根据传递进来的参数设置card, device, internal, id。
3. 分别创建palyback & capture stream。
4. 调用snd_device_new接口创建pcm设备。
调用snd_pcm_new_stream创建一个stream
int snd_pcm_new_stream(struct snd_pcm *pcm, int stream, int substream_count) { int idx, err; struct snd_pcm_str *pstr = &pcm->streams[stream]; struct snd_pcm_substream *substream, *prev; #if IS_ENABLED(CONFIG_SND_PCM_OSS) mutex_init(&pstr->oss.setup_mutex); #endif pstr->stream = stream; pstr->pcm = pcm; pstr->substream_count = substream_count; if (substream_count > 0 && !pcm->internal) { err = snd_pcm_stream_proc_init(pstr); if (err < 0) { pcm_err(pcm, "Error in snd_pcm_stream_proc_init\n"); return err; } } prev = NULL; for (idx = 0, prev = NULL; idx < substream_count; idx++) { substream = kzalloc(sizeof(*substream), GFP_KERNEL); if (substream == NULL) { pcm_err(pcm, "Cannot allocate PCM substream\n"); return -ENOMEM; } substream->pcm = pcm; substream->pstr = pstr; substream->number = idx; substream->stream = stream; sprintf(substream->name, "subdevice #%i", idx); substream->buffer_bytes_max = UINT_MAX; if (prev == NULL) pstr->substream = substream; else prev->next = substream; if (!pcm->internal) { err = snd_pcm_substream_proc_init(substream); if (err < 0) { pcm_err(pcm, "Error in snd_pcm_stream_proc_init\n"); if (prev == NULL) pstr->substream = NULL; else prev->next = NULL; kfree(substream); return err; } } substream->group = &substream->self_group; spin_lock_init(&substream->self_group.lock); mutex_init(&substream->self_group.mutex); INIT_LIST_HEAD(&substream->self_group.substreams); list_add_tail(&substream->link_list, &substream->self_group.substreams); atomic_set(&substream->mmap_count, 0); prev = substream; } return 0; }1. 根据传递进来的参数,设置pcm的stream, pcm, substream_count的值。
2. 在proc下创建pcm相关目录信息。会调用snd_pcm_stream_proc_init函数,根据stream的类型创建pcm0p/pcm0c文件夹,然后会在此文件夹下创建info文件。info文件的类型会通过snd_pcm_stream_proc_info_read函数获得。代表就不贴出来了。:(
root@test:/proc/asound/card0/pcm0c$ cat info card: 0 device: 0 subdevice: 0 stream: CAPTURE id: ALC662 rev1 Analog name: ALC662 rev1 Analog subname: subdevice #0 class: 0 subclass: 0 subdevices_count: 1 subdevices_avail: 13. 会根据substrem_count的个数,进行for循环操作。
4. 分配一个substream结构,设置必要的参数,如: pcm, pstr, number, stream, name等。
5. 调用snd_pcm_substream_proc_init函数,创建sub0目录,然后在此目录下创建info, hw_params, sw_params,status等文件。
6. 将所有的substream会通过linklist链表保存,同时如果有多个substream会通过next指针相连。
至此,pcm设备就全部创建完成,创建完成后会形成如下的逻辑试图。
大体上就是一棵树,根节点是card0, 然后子节点是pcm设备,pcm设备分为capture & playback stream, 然后在stream下又分为substrem。
PCM硬件操作函数集设置
实例化一个pcm设备之后,还需要通过snd_pcm_set_ops函数设置该硬件的操作集合。
void snd_pcm_set_ops(struct snd_pcm *pcm, int direction, const struct snd_pcm_ops *ops) { struct snd_pcm_str *stream = &pcm->streams[direction]; struct snd_pcm_substream *substream; for (substream = stream->substream; substream != NULL; substream = substream->next) substream->ops = ops; }该函数会根据当前stream的方向/类型,设置该硬件对应的snd_pcm_ops操作集合。
整个流程梳理
PCM设备节点创建
当调用snd_card_register的时候,就会依次调用card列表下每个设备的dev_register回调函数,对pcm设备来说就是在_snd_pcm_new函数中的
static struct snd_device_ops ops = { .dev_free = snd_pcm_dev_free, .dev_register = snd_pcm_dev_register, .dev_disconnect = snd_pcm_dev_disconnect, };此时会调用到snd_pcm_dev_register回调处理函数。
static int snd_pcm_dev_register(struct snd_device *device) { int cidx, err; struct snd_pcm_substream *substream; struct snd_pcm_notify *notify; char str[16]; struct snd_pcm *pcm; struct device *dev; if (snd_BUG_ON(!device || !device->device_data)) return -ENXIO; pcm = device->device_data; mutex_lock(®ister_mutex); err = snd_pcm_add(pcm); if (err) { mutex_unlock(®ister_mutex); return err; } for (cidx = 0; cidx < 2; cidx++) { int devtype = -1; if (pcm->streams[cidx].substream == NULL || pcm->internal) continue; switch (cidx) { case SNDRV_PCM_STREAM_PLAYBACK: sprintf(str, "pcmC%iD%ip", pcm->card->number, pcm->device); devtype = SNDRV_DEVICE_TYPE_PCM_PLAYBACK; break; case SNDRV_PCM_STREAM_CAPTURE: sprintf(str, "pcmC%iD%ic", pcm->card->number, pcm->device); devtype = SNDRV_DEVICE_TYPE_PCM_CAPTURE; break; } /* device pointer to use, pcm->dev takes precedence if * it is assigned, otherwise fall back to card's device * if possible */ dev = pcm->dev; if (!dev) dev = snd_card_get_device_link(pcm->card); /* register pcm */ err = snd_register_device_for_dev(devtype, pcm->card, pcm->device, &snd_pcm_f_ops[cidx], pcm, str, dev); if (err < 0) { list_del(&pcm->list); mutex_unlock(®ister_mutex); return err; } dev = snd_get_device(devtype, pcm->card, pcm->device); if (dev) { err = sysfs_create_groups(&dev->kobj, pcm_dev_attr_groups); if (err < 0) dev_warn(dev, "pcm %d:%d: cannot create sysfs groups\n", pcm->card->number, pcm->device); put_device(dev); } for (substream = pcm->streams[cidx].substream; substream; substream = substream->next) snd_pcm_timer_init(substream); } list_for_each_entry(notify, &snd_pcm_notify_list, list) notify->n_register(pcm); mutex_unlock(®ister_mutex); return 0; }1. 合法性判断,对pcm设备来说,snd_device->device_data存放的是当前的pcm指针。
2. 会调用snd_pcm_add此函数,判断此pcm设备是存在snd_pcm_devices链表中存在,存在就返回错误,不存在就添加。
3. 设置当前pcm设备name, 以及具体的pcm设备类型,PCM_CAPTURE or PCM_PLAYBACK。
4. 调用snd_register_device_for_dev添加pcm设备到系统中。
5. 调用snd_get_device此函数返回当前注册的pcm设备,然后设置该pcm的属性。
6. 调用snd_pcm_timer_init函数,进行pcm定时器的初始化。
在继续分析snd_register_device_for_dev函数之前需要先介绍一个结构体。struct snd_minor。
struct snd_minor { int type; /* SNDRV_DEVICE_TYPE_XXX */ int card; /* card number */ int device; /* device number */ const struct file_operations *f_ops; /* file operations */ void *private_data; /* private data for f_ops->open */ struct device *dev; /* device for sysfs */ struct snd_card *card_ptr; /* assigned card instance */ };.type: 设备类型,比如是pcm, control, timer等设备。
.card_number: 所属的card。
.device: 当前设备类型下的设备编号。
.f_ops: 具体设备的文件操作集合。
.private_data: open函数的私有数据。
.card_ptr: 所属的card。
此结构体是用来保存当前设备的上下文信息,该card下所有逻辑设备都存在此结构。
int snd_register_device_for_dev(int type, struct snd_card *card, int dev, const struct file_operations *f_ops, void *private_data, const char *name, struct device *device) { int minor; struct snd_minor *preg; if (snd_BUG_ON(!name)) return -EINVAL; preg = kmalloc(sizeof *preg, GFP_KERNEL); if (preg == NULL) return -ENOMEM; preg->type = type; preg->card = card ? card->number : -1; preg->device = dev; preg->f_ops = f_ops; preg->private_data = private_data; preg->card_ptr = card; mutex_lock(&sound_mutex); #ifdef CONFIG_SND_DYNAMIC_MINORS minor = snd_find_free_minor(type); #else minor = snd_kernel_minor(type, card, dev); if (minor >= 0 && snd_minors[minor]) minor = -EBUSY; #endif if (minor < 0) { mutex_unlock(&sound_mutex); kfree(preg); return minor; } snd_minors[minor] = preg; preg->dev = device_create(sound_class, device, MKDEV(major, minor), private_data, "%s", name); if (IS_ERR(preg->dev)) { snd_minors[minor] = NULL; mutex_unlock(&sound_mutex); minor = PTR_ERR(preg->dev); kfree(preg); return minor; } mutex_unlock(&sound_mutex); return 0; }1. 首先上来就分配一个snd_minor结构体。
2. 根据传递进来的参数,各种参数。对于pcm设备来说,当前的private_data就是pcm。此处需要重点介绍file_operations结构。此函数最终会在应用程序调用open的时候走到此处
const struct file_operations snd_pcm_f_ops[2] = { { .owner = THIS_MODULE, .write = snd_pcm_write, .aio_write = snd_pcm_aio_write, .open = snd_pcm_playback_open, .release = snd_pcm_release, .llseek = no_llseek, .poll = snd_pcm_playback_poll, .unlocked_ioctl = snd_pcm_playback_ioctl, .compat_ioctl = snd_pcm_ioctl_compat, .mmap = snd_pcm_mmap, .fasync = snd_pcm_fasync, .get_unmapped_area = snd_pcm_get_unmapped_area, }, { .owner = THIS_MODULE, .read = snd_pcm_read, .aio_read = snd_pcm_aio_read, .open = snd_pcm_capture_open, .release = snd_pcm_release, .llseek = no_llseek, .poll = snd_pcm_capture_poll, .unlocked_ioctl = snd_pcm_capture_ioctl, .compat_ioctl = snd_pcm_ioctl_compat, .mmap = snd_pcm_mmap, .fasync = snd_pcm_fasync, .get_unmapped_area = snd_pcm_get_unmapped_area, } };
3. 调用snd_kernel_minor函数获得设备的此设备号。该此设备号已经存在则返回BUSY,小于返回错误。
4. 用次设备号为下标,将当前申请的snd_minor放入到全局的snd_minors结构体数组中。
static struct snd_minor *snd_minors[SNDRV_OS_MINORS];5. 调用device_create函数创建该pcm的设备节点。
6. 为什么创建出的设备节点全在/dev/snd下呢? 此问题源自sound_class创建的时候,设置的devnode参数。
static char *sound_devnode(struct device *dev, umode_t *mode) { if (MAJOR(dev->devt) == SOUND_MAJOR) return NULL; return kasprintf(GFP_KERNEL, "snd/%s", dev_name(dev)); } static int __init init_soundcore(void) { int rc; rc = init_oss_soundcore(); if (rc) return rc; sound_class = class_create(THIS_MODULE, "sound"); if (IS_ERR(sound_class)) { cleanup_oss_soundcore(); return PTR_ERR(sound_class); } sound_class->devnode = sound_devnode; return 0; }当调用device_create的时候,最终会调用到device_add->devtmpfs_create_node->device_get_devnode中
/* the class may provide a specific name */ if (dev->class && dev->class->devnode) *tmp = dev->class->devnode(dev, mode);最终出现的设备节点会出现在/dev/snd下。
应用到驱动的过程
当应用程序在通过open系统调用打开/dev/pcmC0D0c的过程
1. 先会调用到在alsa_sound_init中注册的字符设备"alsa"的file_operations中的open函数中。
static const struct file_operations snd_fops = { .owner = THIS_MODULE, .open = snd_open, .llseek = noop_llseek, };
2. 此处会根据次设备号在snd_minors中获得注册的pcm的snd_minor结构,然后调用open回调
if (file->f_op->open) err = file->f_op->open(inode, file);3. 此处的open回调就是snd_pcm_f_ops中的open。
4. 当应用程序执行ioctl的时候,就直接调用file文件中的file_operaions中的ioctl即可,因为在此处已经将snd_minor中的file_operation替换到file中。
#define replace_fops(f, fops) \ do { \ struct file *__file = (f); \ fops_put(__file->f_op); \ BUG_ON(!(__file->f_op = (fops))); \ } while(0)5. 比如当前调用的是playback中的open,会调用snd_pcm_playback_open函数,此函数会设置pcm的runtime信息,最终会调用硬件相关的open函数中。
if ((err = substream->ops->open(substream)) < 0)
至此,整个pcm设备创建,调用,以及应用到驱动整个流程分析完毕。:)
作者:longwang155069 发表于2016/11/25 20:11:16 原文链接
阅读:38 评论:0 查看评论