Android Handler分析
标签(空格分隔): handler
最近面试总是被问到handler相关的东西,那就静下心来,仔细分析一下handler的源码,看一下内部到底是个什么鬼,也好出去装逼不是。
- 首先看一下handler的构造方法,都有些什么鬼,我把源码的注释去掉了,想看的自己去源码里看
private static final boolean FIND_POTENTIAL_LEAKS = false;
/**
* Default constructor associates this handler with the {@link Looper} for the
* current thread.
*
* If this thread does not have a looper, this handler won't be able to receive messages
* so an exception is thrown.
*/
public Handler() {
this(null, false);
}
public Handler(Callback callback) {
this(callback, false);
}
public Handler(Looper looper) {
this(looper, null, false);
}
public Handler(Looper looper, Callback callback) {
this(looper, callback, false);
}
public Handler(boolean async) {
this(null, async);
}
/**
* @param async If true, the handler calls {@link Message#setAsynchronous(boolean)} for
each {@link Message} that is sent to it or {@link Runnable} that is posted to it.也就是说async=true的时候,handler sent或者post的message,均是异步的
*
*/
public Handler(Callback callback, boolean async) {
if (FIND_POTENTIAL_LEAKS) {
final Class<? extends Handler> klass = getClass();
if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) &&
(klass.getModifiers() & Modifier.STATIC) == 0) {
Log.w(TAG, "The following Handler class should be static or leaks might occur: " +
//返回全路径的完整的类型,类似class.getName()用法
klass.getCanonicalName());
}
}
mLooper = Looper.myLooper();
if (mLooper == null) {
throw new RuntimeException(
"Can't create handler inside thread that has not called Looper.prepare()");
}
mQueue = mLooper.mQueue;
mCallback = callback;
mAsynchronous = async;
}
public Handler(Looper looper, Callback callback, boolean async) {
mLooper = looper;
mQueue = looper.mQueue;
mCallback = callback;
mAsynchronous = async;
}
主要看一下37行–55行:
我们看到FIND_POTENTIAL_LEAKS 默认是false,当FIND_POTENTIAL_LEAKS=true的时候,貌似并没有什么卵用,直接略过。继续向下看,
47行:
mLooper = Looper.myLooper()
if (mLooper == null) {
throw new RuntimeException(
"Can't create handler inside thread that has not called Looper.prepare()");
}
如果Looper=null,直接就抛出异常,这也就解释了为什么我们在子线程创建Handler之前,要调用一下Looper.prepare(),否则会报错。一个线程只能有一个Looper
60行:可以看到MessageQueue是Looper来维护的
再看10-17行:就知道我们在activity或者fragment中,实现handler有两种方式1,实现Callback接口,来处理Message.2,重写内部handleMessage(Message msg)来处理Message。
再来看下一段代码:
public final Message obtainMessage()
{
return Message.obtain(this);
}
public final Message obtainMessage(int what)
{
return Message.obtain(this, what);
}
public final Message obtainMessage(int what, Object obj)
{
return Message.obtain(this, what, obj);
}
public final Message obtainMessage(int what, int arg1, int arg2)
{
return Message.obtain(this, what, arg1, arg2);
}
public final Message obtainMessage(int what, int arg1, int arg2, Object obj)
{
return Message.obtain(this, what, arg1, arg2, obj);
}
Message源码:
public static Message obtain(Handler h, int what,
int arg1, int arg2, Object obj) {
Message m = obtain();
m.target = h;
m.what = what;
m.arg1 = arg1;
m.arg2 = arg2;
m.obj = obj;
return m;
}
/**
* Return a new Message instance from the global pool. Allows us to
* avoid allocating new objects in many cases.
消息队列中消息的复用
*/
public static Message obtain() {
synchronized (sPoolSync) {
if (sPool != null) {
Message m = sPool;
sPool = m.next;
m.next = null;
m.flags = 0; // clear in-use flag
sPoolSize--;
return m;
}
}
return new Message();
}
由以上源码可以看出:android api已经给我们提供了封装Message的方法
//实现Message的复用,
Message msg = handler.obtain();
Message msg = Message.obtain()
所以不要再直接
//不要这样使用
Message msg = new Message();
继续向下看源码:
public final boolean post(Runnable r)
{
return sendMessageDelayed(getPostMessage(r), 0);
}
public final boolean postAtTime(Runnable r, long uptimeMillis)
{
return sendMessageAtTime(getPostMessage(r), uptimeMillis);
}
public final boolean postAtTime(Runnable r, Object token, long uptimeMillis)
{
return sendMessageAtTime(getPostMessage(r, token), uptimeMillis);
}
public final boolean postDelayed(Runnable r, long delayMillis)
{
return sendMessageDelayed(getPostMessage(r), delayMillis);
}
public final boolean postAtFrontOfQueue(Runnable r)
{
return sendMessageAtFrontOfQueue(getPostMessage(r));
}
除了最后一个方法外,其余的方法应该都很眼熟吧,使用也没什么难的
最后一个方法26-29行:
向实现了Runnable接口的对象发送一个消息。使得Runnable对象r能够在消息队列的下一个迭代中继续执行。
这个方法只能在非常特殊的情况下才有用—它很容易饿死在消息队列中,导致排序问题或者其他难以预料的负面影响,说实话,我也没用过
再来看一下sendMessage相关的几个方法:
public final boolean sendMessage(Message msg)
{
return sendMessageDelayed(msg, 0);
}
public final boolean sendEmptyMessage(int what)
{
return sendEmptyMessageDelayed(what, 0);
}
public final boolean sendEmptyMessageDelayed(int what, long delayMillis) {
Message msg = Message.obtain();
msg.what = what;
return sendMessageDelayed(msg, delayMillis);
}
public final boolean sendEmptyMessageAtTime(int what, long uptimeMillis) {
Message msg = Message.obtain();
msg.what = what;
return sendMessageAtTime(msg, uptimeMillis);
}
public final boolean sendMessageDelayed(Message msg, long delayMillis)
{
if (delayMillis < 0) {
delayMillis = 0;
}
return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);
}
public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
MessageQueue queue = mQueue;
if (queue == null) {
RuntimeException e = new RuntimeException(
this + " sendMessageAtTime() called with no mQueue");
Log.w("Looper", e.getMessage(), e);
return false;
}
return enqueueMessage(queue, msg, uptimeMillis);
}
public final boolean sendMessageAtFrontOfQueue(Message msg) {
MessageQueue queue = mQueue;
if (queue == null) {
RuntimeException e = new RuntimeException(
this + " sendMessageAtTime() called with no mQueue");
Log.w("Looper", e.getMessage(), e);
return false;
}
return enqueueMessage(queue, msg, 0);
}
private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
msg.target = this;
if (mAsynchronous) {
msg.setAsynchronous(true);
}
return queue.enqueueMessage(msg, uptimeMillis);
}
从上往下看,到最后全部都交给了MessageQueue去处理了,queue.enqueueMessage(msg, uptimeMillis)这个方法应该就是入队了,看下源码
boolean enqueueMessage(Message msg, long when) {
if (msg.target == null) {
throw new IllegalArgumentException("Message must have a target.");
}
if (msg.isInUse()) {
throw new IllegalStateException(msg + " This message is already in use.");
}
synchronized (this) {
if (mQuitting) {
IllegalStateException e = new IllegalStateException(
msg.target + " sending message to a Handler on a dead thread");
Log.w(TAG, e.getMessage(), e);
msg.recycle();
return false;
}
msg.markInUse();
msg.when = when;
Message p = mMessages;
boolean needWake;
if (p == null || when == 0 || when < p.when) {
// New head, wake up the event queue if blocked.
msg.next = p;
mMessages = msg;
needWake = mBlocked;
} else {
// Inserted within the middle of the queue. Usually we don't have to wake
// up the event queue unless there is a barrier at the head of the queue
// and the message is the earliest asynchronous message in the queue.
needWake = mBlocked && p.target == null && msg.isAsynchronous();
Message prev;
for (;;) {
prev = p;
p = p.next;
if (p == null || when < p.when) {
break;
}
if (needWake && p.isAsynchronous()) {
needWake = false;
}
}
msg.next = p; // invariant: p == prev.next
prev.next = msg;
}
// We can assume mPtr != 0 because mQuitting is false.
if (needWake) {
nativeWake(mPtr);
}
}
return true;
}
2-7行:是否已经在处理中和是否有处理它的Handler,
10-16行:检查是否在中止,如果是,那么message直接回收
22行-end:就是入栈操作了
在这其中作了一些减少同步操作的优化,即使当前消息队列已经处于 Blocked 状态,且队首是一个消息屏障(这里是通过 p.target ==null来判断队首是否是消息屏障),并且要插入的消息是所有异步消息中最早要处理的才会 needwake激活消息队列去获取下一个消息。
继续往下看:
public final void removeCallbacks(Runnable r)
{
mQueue.removeMessages(this, r, null);
}
public final void removeCallbacks(Runnable r, Object token)
{
mQueue.removeMessages(this, r, token);
}
public final void removeMessages(int what) {
mQueue.removeMessages(this, what, null);
}
public final void removeMessages(int what, Object object) {
mQueue.removeMessages(this, what, object);
}
public final void removeCallbacksAndMessages(Object token) {
mQueue.removeCallbacksAndMessages(this, token);
}
这里Remove操作也是全部交给了MessageQueue去处理了.
再看一下Looper有什么鬼:
// sThreadLocal.get() will return null unless you've called prepare().
static final ThreadLocal<Looper> sThreadLocal = new ThreadLocal<Looper>();
final MessageQueue mQueue;
final Thread mThread;
从代码看出,Looper主要就是维护了这三个东西,ThreadLocal,MessageQueue,Thread;
public static void prepare() {
prepare(true);
}
private static void prepare(boolean quitAllowed) {
if (sThreadLocal.get() != null) {
throw new RuntimeException("Only one Looper may be created per thread");
}
sThreadLocal.set(new Looper(quitAllowed));
}
private Looper(boolean quitAllowed) {
mQueue = new MessageQueue(quitAllowed);
mThread = Thread.currentThread();
}
也就是说我们要想获得Looper必须先调用prepare(),这也解释了为毛在子线程需要首先调用Looper.prepare(),然后再调用Loop.myLooper()才能获得Looper;而且也能知道一个线程只能有一个Looper,依据就在这里。
至于为毛UI线程不需要调用Looper.prepare(),看下面的代码就知道了
/**
* Initialize the current thread as a looper, marking it as an
* application's main looper. The main looper for your application
* is created by the Android environment, so you should never need
* to call this function yourself. See also: {@link #prepare()}
*/
public static void prepareMainLooper() {
prepare(false);
synchronized (Looper.class) {
if (sMainLooper != null) {
throw new IllegalStateException("The main Looper has already been prepared.");
}
sMainLooper = myLooper();
}
}
/**
* Returns the application's main looper, which lives in the main thread of the application.
*/
public static Looper getMainLooper() {
synchronized (Looper.class) {
return sMainLooper;
}
}
这下就清楚了,Android 系统已经为我们准备好了MainLooper,不需要我们再主动去调用Looper.prepare(),
剩下只有Looper的核心loop:
/**
* Run the message queue in this thread. Be sure to call
* {@link #quit()} to end the loop.
*/
public static void loop() {
final Looper me = myLooper();
if (me == null) {
throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
}
final MessageQueue queue = me.mQueue;
// Make sure the identity of this thread is that of the local process,
// and keep track of what that identity token actually is.
Binder.clearCallingIdentity();
final long ident = Binder.clearCallingIdentity();
for (;;) {
Message msg = queue.next(); // might block
if (msg == null) {
// No message indicates that the message queue is quitting.
return;
}
// This must be in a local variable, in case a UI event sets the logger
Printer logging = me.mLogging;
if (logging != null) {
logging.println(">>>>> Dispatching to " + msg.target + " " +
msg.callback + ": " + msg.what);
}
msg.target.dispatchMessage(msg);
if (logging != null) {
logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
}
// Make sure that during the course of dispatching the
// identity of the thread wasn't corrupted.
final long newIdent = Binder.clearCallingIdentity();
if (ident != newIdent) {
Log.wtf(TAG, "Thread identity changed from 0x"
+ Long.toHexString(ident) + " to 0x"
+ Long.toHexString(newIdent) + " while dispatching to "
+ msg.target.getClass().getName() + " "
+ msg.callback + " what=" + msg.what);
}
msg.recycleUnchecked();
}
因此要想Looper开始工作还要调用Loop.loop(),进入消息循环
18行—从消息队列中取出消息
31行—handler分发消息dispatchMessage(msg);
48行–消息回收
那我们在回过头来看一下Handler.dispatchMessage(msg),看看其中是怎么处理的
public void dispatchMessage(Message msg) {
if (msg.callback != null) {
handleCallback(msg);
} else {
if (mCallback != null) {
if (mCallback.handleMessage(msg)) {
return;
}
}
handleMessage(msg);
}
}
private static void handleCallback(Message message) {
message.callback.run();
}
/**
* Subclasses must implement this to receive messages.
*/
public void handleMessage(Message msg) {
}
public interface Callback {
public boolean handleMessage(Message msg);
}
先看1-12行:如果msg.callback!=null,直接执行handleCallback(msg)方法,然后跟踪过去,你发现直接调用了run(),这也说明了Handler.post(Runnable)其实是运行在Handler绑定的线程中的,并不是子线程;
再往下:你会发现这里有两种handleMessage的方案,一种实现实现Handler.Callback 调用callback.handleMessage(),另一种直接handleMessage();
下面轮到Message了,看一下Message内部是个什么样子,看看有没有我们想象的那么神秘:
public int what;
public int arg1;
public int arg2;
public Object obj;
/**
* Optional Messenger where replies to this message can be sent. The
* semantics of exactly how this is used are up to the sender and
* receiver.
*/
public Messenger replyTo;
public int sendingUid = -1;
static final int FLAG_IN_USE = 1 << 0;
static final int FLAG_ASYNCHRONOUS = 1 << 1;
static final int FLAGS_TO_CLEAR_ON_COPY_FROM = FLAG_IN_USE;
int flags;
long when;
Bundle data;
Handler target;
Runnable callback;
Message next;
private static final Object sPoolSync = new Object();
private static Message sPool;
private static int sPoolSize = 0;
private static final int MAX_POOL_SIZE = 50;
private static boolean gCheckRecycle = true;
/** @hide */
public static void updateCheckRecycle(int targetSdkVersion) {
if (targetSdkVersion < Build.VERSION_CODES.LOLLIPOP) {
gCheckRecycle = false;
}
}
public void recycle() {
if (isInUse()) {
if (gCheckRecycle) {
throw new IllegalStateException("This message cannot be recycled because it "
+ "is still in use.");
}
return;
}
recycleUnchecked();
}
void recycleUnchecked() {
// Mark the message as in use while it remains in the recycled object pool.
// Clear out all other details.
flags = FLAG_IN_USE;
what = 0;
arg1 = 0;
arg2 = 0;
obj = null;
replyTo = null;
sendingUid = -1;
when = 0;
target = null;
callback = null;
data = null;
synchronized (sPoolSync) {
if (sPoolSize < MAX_POOL_SIZE) {
next = sPool;
sPool = this;
sPoolSize++;
}
}
}
/*package*/ boolean isInUse() {
return ((flags & FLAG_IN_USE) == FLAG_IN_USE);
}
/*package*/ void markInUse() {
flags |= FLAG_IN_USE;
}
看数据结构,Message就是一个链式结构的设计,里面只有一个核心的recycleUnchecked()方法,实现消息的重置和复用
说了这么多,有点晕乎乎的感觉,那就用图形化来说明一下:
再来个例子,主线程向子线程发送消息,
public class MyThread extends Thread implements Handler.Callback{
public Handler mHandler;
public Handler secondHandler;
@Override
public void run(){
Looper.prepare();
mHandler = new Handler(this);
secondHandler = new Handler(){
@Override
public void handleMessage(Message msg) {
System.out.println("msg----"+msg.toString());
}
};
Looper.loop();
}
@Override
public boolean handleMessage(Message msg) {
System.out.println("msg----"+msg.toString());
//记得要关闭 Looper.myLooper().quit();
return false;
}
}
public class MainActivity extends Activity {
MyThread thread;
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
thread = new MyThread();
thread.start();
}
@Override
protected void onResume(){
super.onResume();
thread.mHandler.sendEmptyMessage(3);
thread.secondHandler.sendEmptyMessage(55);
}
}
Handler相关内容完美结束,尼玛再也不怕出去谁问handler机制了,如果有错误的地方,希望大大们提醒我一下。