前言
根据上一节linux电源管理-概述可知,linux电源管理存在的几种方式,如何查看这几种方式,以及最后的如何睡眠唤醒等。
通过echo mem > /sys/power/state就可以达到睡眠,所以可以根据此节点的sys代码分析suspend的流程。
suspend代码分析
在手机端执行如下命令:
echo mem > /sys/power/state根据sys节点的属性命令规则,可以此节点的实现代码为: state_store
state_store函数分析
static ssize_t state_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t n) { suspend_state_t state; int error; error = pm_autosleep_lock(); if (error) return error; if (pm_autosleep_state() > PM_SUSPEND_ON) { error = -EBUSY; goto out; } state = decode_state(buf, n); if (state < PM_SUSPEND_MAX) error = pm_suspend(state); else if (state == PM_SUSPEND_MAX) error = hibernate(); else error = -EINVAL; out: pm_autosleep_unlock(); return error ? error : n; }1) pm_autosleep_lock
int pm_autosleep_lock(void) { return mutex_lock_interruptible(&autosleep_lock); }获得autosleep锁,锁住autosleep功能,此功能在后面分析。
2. 判断当前autosleep的状态,如果当前状态大于PM_SUSPEND_ON则,返回退出。关于suspend的状态如下:
#define PM_SUSPEND_ON ((__force suspend_state_t) 0) #define PM_SUSPEND_FREEZE ((__force suspend_state_t) 1) #define PM_SUSPEND_STANDBY ((__force suspend_state_t) 2) #define PM_SUSPEND_MEM ((__force suspend_state_t) 3) #define PM_SUSPEND_MIN PM_SUSPEND_FREEZE #define PM_SUSPEND_MAX ((__force suspend_state_t) 4)3. 解析当前传入的state。如果state小于PM_SUSPEND_MAX就走suspend流程,等于PM_SUSPEND_MAX就走hibernate流程。加入我们传入的是mem, 则就会走suspend流程。
pm_suspend函数分析
int pm_suspend(suspend_state_t state) { int error; if (state <= PM_SUSPEND_ON || state >= PM_SUSPEND_MAX) return -EINVAL; pm_suspend_marker("entry"); error = enter_state(state); if (error) { suspend_stats.fail++; dpm_save_failed_errno(error); } else { suspend_stats.success++; } pm_suspend_marker("exit"); return error; }1. 依然会再次判断当前的state是否在PM_SUSPEND_ON和PM_SUSPEND_MAX之间
2. pm_suspend_marker("entry")
static void pm_suspend_marker(char *annotation) { struct timespec ts; struct rtc_time tm; getnstimeofday(&ts); rtc_time_to_tm(ts.tv_sec, &tm); pr_info("PM: suspend %s %d-%02d-%02d %02d:%02d:%02d.%09lu UTC\n", annotation, tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday, tm.tm_hour, tm.tm_min, tm.tm_sec, ts.tv_nsec); }在suspend之间记录时间,用于统计或者调试suspend花费的时间
3. 调用enter_state进入suspend的下一步,如果执行suspend成功,增加suspend.success的引用计数,否则增加suspend.fail的引用计数。
enter_state函数分析
static int enter_state(suspend_state_t state) { int error; trace_suspend_resume(TPS("suspend_enter"), state, true); if (state == PM_SUSPEND_FREEZE) { #ifdef CONFIG_PM_DEBUG if (pm_test_level != TEST_NONE && pm_test_level <= TEST_CPUS) { pr_warning("PM: Unsupported test mode for freeze state," "please choose none/freezer/devices/platform.\n"); return -EAGAIN; } #endif } else if (!valid_state(state)) { return -EINVAL; } if (!mutex_trylock(&pm_mutex)) return -EBUSY; if (state == PM_SUSPEND_FREEZE) freeze_begin(); trace_suspend_resume(TPS("sync_filesystems"), 0, true); printk(KERN_INFO "PM: Syncing filesystems ... "); sys_sync(); printk("done.\n"); trace_suspend_resume(TPS("sync_filesystems"), 0, false); pr_debug("PM: Preparing system for %s sleep\n", pm_states[state]); error = suspend_prepare(state); if (error) goto Unlock; if (suspend_test(TEST_FREEZER)) goto Finish; trace_suspend_resume(TPS("suspend_enter"), state, false); pr_debug("PM: Entering %s sleep\n", pm_states[state]); pm_restrict_gfp_mask(); error = suspend_devices_and_enter(state); pm_restore_gfp_mask(); Finish: pr_debug("PM: Finishing wakeup.\n"); suspend_finish(); Unlock: mutex_unlock(&pm_mutex); return error; }1. 通过vaild_state函数用来判断该平台是否支持该状态睡眠。
static bool valid_state(suspend_state_t state) { /* * PM_SUSPEND_STANDBY and PM_SUSPEND_MEM states need low level * support and need to be valid to the low level * implementation, no valid callback implies that none are valid. */ return suspend_ops && suspend_ops->valid && suspend_ops->valid(state); }根据注释可知,standby和mem状态是处于低功耗状态下的,需要平台代码来支持实现的。因此内核使用platform_suspend_ops来定义各个平台的pm实现,然后通过suspend_set_ops函数设置具体平台pm到suspend_ops中。最终还是通过vaild函数来判断该平台是否支持需要睡眠的状态。
内核也提供了只支持mem睡眠的函数
int suspend_valid_only_mem(suspend_state_t state) { return state == PM_SUSPEND_MEM; }当然了如果state状态是freeze的话直接继续执行。
2. 调用mutex_trylock获得一个mutex锁,防止在suspend的时候再次suspend。
3. 如果当前state是PM_SUSPEND_FREEZE,则调用freeze_begin做开始准备工作。
4. 同步文件系统。
5. 调用suspend_prepare做进一步suspend前期准备工作,准备控制台,冻结内核线程等。
6. 调用suspend_devices_and_enter做设备以及系统相关的susupend操作。
7. 调用suspend_finish做最后的恢复工作。
suspend_prepare函数分析
/** * suspend_prepare - Prepare for entering system sleep state. * * Common code run for every system sleep state that can be entered (except for * hibernation). Run suspend notifiers, allocate the "suspend" console and * freeze processes. */ static int suspend_prepare(suspend_state_t state) { int error; if (!sleep_state_supported(state)) return -EPERM; pm_prepare_console(); error = pm_notifier_call_chain(PM_SUSPEND_PREPARE); if (error) goto Finish; trace_suspend_resume(TPS("freeze_processes"), 0, true); error = suspend_freeze_processes(); trace_suspend_resume(TPS("freeze_processes"), 0, false); if (!error) return 0; suspend_stats.failed_freeze++; dpm_save_failed_step(SUSPEND_FREEZE); Finish: pm_notifier_call_chain(PM_POST_SUSPEND); pm_restore_console(); return error; }1. 检测该平台suspend_ops是否实现了enter函数
static bool sleep_state_supported(suspend_state_t state) { return state == PM_SUSPEND_FREEZE || (suspend_ops && suspend_ops->enter); }2. 调用pm_prepare_console函数切换控制台,重新分配一个suspend模式下控制台,然后重定向kmsg。
3. 通过调用pm通知链,发送PM_SUSPEND_PREPARE消息。
int pm_notifier_call_chain(unsigned long val) { int ret = blocking_notifier_call_chain(&pm_chain_head, val, NULL); return notifier_to_errno(ret); }那谁会收到这类消息呢? 只有通过register_pm_notifier的设备,子系统会在这个时候处理自己的事情。
int register_pm_notifier(struct notifier_block *nb) { return blocking_notifier_chain_register(&pm_chain_head, nb); }4. 调用suspend_freeze_processes冻结userhelper进程,已经内核线程。如果冻结出现失败,记录失败的引用计数。
5. 接着会通过通知链恢复suspend,已经恢复控制台。
suspend_devices_and_enter函数分析
/** * suspend_devices_and_enter - Suspend devices and enter system sleep state. * @state: System sleep state to enter. */ int suspend_devices_and_enter(suspend_state_t state) { int error; bool wakeup = false; if (!sleep_state_supported(state)) return -ENOSYS; error = platform_suspend_begin(state); if (error) goto Close; suspend_console(); suspend_test_start(); error = dpm_suspend_start(PMSG_SUSPEND); if (error) { pr_err("PM: Some devices failed to suspend, or early wake event detected\n"); log_suspend_abort_reason("Some devices failed to suspend, or early wake event detected"); goto Recover_platform; } suspend_test_finish("suspend devices"); if (suspend_test(TEST_DEVICES)) goto Recover_platform; do { error = suspend_enter(state, &wakeup); } while (!error && !wakeup && platform_suspend_again(state)); Resume_devices: suspend_test_start(); dpm_resume_end(PMSG_RESUME); suspend_test_finish("resume devices"); trace_suspend_resume(TPS("resume_console"), state, true); resume_console(); trace_suspend_resume(TPS("resume_console"), state, false); Close: platform_resume_end(state); return error; Recover_platform: platform_recover(state); goto Resume_devices; }1. 调用sleep_state_supported函数判断当前平台是否实现了suspend_ops,已经suspend_ops->enter函数。
2. 如果当前状态是freeze,就调用freeze_ops的begin函数。否则就调用平台相关的begin函数。这里的begin主要是各个平台pm的一些设置,每个平台的操作都不一样,这里不详细说明。
static int platform_suspend_begin(suspend_state_t state) { if (state == PM_SUSPEND_FREEZE && freeze_ops && freeze_ops->begin) return freeze_ops->begin(); else if (suspend_ops->begin) return suspend_ops->begin(state); else return 0; }
3. 调用suspend_console挂起控制台,防止其它代码访问该控制台。
4. 调用suspend_test_start记录当前suspend刚开始的时候的时间,使用jiffies表示。
void suspend_test_start(void) { /* FIXME Use better timebase than "jiffies", ideally a clocksource. * What we want is a hardware counter that will work correctly even * during the irqs-are-off stages of the suspend/resume cycle... */ suspend_test_start_time = jiffies; }5. 调用dpm_suspend_start函数,该函数主要是调用所有设备的prepare和suspend回调函数。如果出现suspend失败,则会打印"fail suspend"的log,以及调用platform_recover函数执行平台相关的recover回调。
static void platform_recover(suspend_state_t state) { if (state != PM_SUSPEND_FREEZE && suspend_ops->recover) suspend_ops->recover(); }
6. 调用suspend_enter使整个系统进入suspend状态。
dpm_suspend_start函数分析
int dpm_suspend_start(pm_message_t state) { int error; error = dpm_prepare(state); if (error) { suspend_stats.failed_prepare++; dpm_save_failed_step(SUSPEND_PREPARE); } else error = dpm_suspend(state); return error; }1. 调用dpm_prepare函数,执行所有设备的prepare回调函数。执行顺序是pm_domain-type-class-bus-driver,如果失败设置failed_prepare的引用计数值。
2. 调用dpm_suspend函数,执行所有设备的suspend回调函数。
dpm_prepare函数分析
/** * dpm_prepare - Prepare all non-sysdev devices for a system PM transition. * @state: PM transition of the system being carried out. * * Execute the ->prepare() callback(s) for all devices. */ int dpm_prepare(pm_message_t state) { int error = 0; trace_suspend_resume(TPS("dpm_prepare"), state.event, true); might_sleep(); mutex_lock(&dpm_list_mtx); while (!list_empty(&dpm_list)) { struct device *dev = to_device(dpm_list.next); get_device(dev); mutex_unlock(&dpm_list_mtx); error = device_prepare(dev, state); mutex_lock(&dpm_list_mtx); if (error) { if (error == -EAGAIN) { put_device(dev); error = 0; continue; } printk(KERN_INFO "PM: Device %s not prepared " "for power transition: code %d\n", dev_name(dev), error); put_device(dev); break; } dev->power.is_prepared = true; if (!list_empty(&dev->power.entry)) list_move_tail(&dev->power.entry, &dpm_prepared_list); put_device(dev); } mutex_unlock(&dpm_list_mtx); trace_suspend_resume(TPS("dpm_prepare"), state.event, false); return error; }1. 判断dpm_list是否为空。那这个dpm_list是在哪里设置的呢? dpm_list是在device_add的时候调用device_pm_add函数,将当前的设备添加到dpm_list中的。
void device_pm_add(struct device *dev) { pr_debug("PM: Adding info for %s:%s\n", dev->bus ? dev->bus->name : "No Bus", dev_name(dev)); mutex_lock(&dpm_list_mtx); if (dev->parent && dev->parent->power.is_prepared) dev_warn(dev, "parent %s should not be sleeping\n", dev_name(dev->parent)); list_add_tail(&dev->power.entry, &dpm_list); mutex_unlock(&dpm_list_mtx); }2. 调用get_device增加设备的引用计数,然后调用device_prepare函数调用设备的prepare回调。如果失败减少设备的引用计数。
3. 设置该设备的is_prepared标志位,然后将该设备添加到dom_prepared_list链表中。
device_prepare函数分析
static int device_prepare(struct device *dev, pm_message_t state) { int (*callback)(struct device *) = NULL; char *info = NULL; int ret = 0; if (dev->power.syscore) return 0; /* * If a device's parent goes into runtime suspend at the wrong time, * it won't be possible to resume the device. To prevent this we * block runtime suspend here, during the prepare phase, and allow * it again during the complete phase. */ pm_runtime_get_noresume(dev); device_lock(dev); dev->power.wakeup_path = device_may_wakeup(dev); if (dev->pm_domain) { info = "preparing power domain "; callback = dev->pm_domain->ops.prepare; } else if (dev->type && dev->type->pm) { info = "preparing type "; callback = dev->type->pm->prepare; } else if (dev->class && dev->class->pm) { info = "preparing class "; callback = dev->class->pm->prepare; } else if (dev->bus && dev->bus->pm) { info = "preparing bus "; callback = dev->bus->pm->prepare; } if (!callback && dev->driver && dev->driver->pm) { info = "preparing driver "; callback = dev->driver->pm->prepare; } if (callback) { trace_device_pm_callback_start(dev, info, state.event); ret = callback(dev); trace_device_pm_callback_end(dev, ret); } device_unlock(dev); if (ret < 0) { suspend_report_result(callback, ret); pm_runtime_put(dev); return ret; } /* * A positive return value from ->prepare() means "this device appears * to be runtime-suspended and its state is fine, so if it really is * runtime-suspended, you can leave it in that state provided that you * will do the same thing with all of its descendants". This only * applies to suspend transitions, however. */ spin_lock_irq(&dev->power.lock); dev->power.direct_complete = ret > 0 && state.event == PM_EVENT_SUSPEND; spin_unlock_irq(&dev->power.lock); return 0; }此函数就是从设备的pm_domain, type, class,bus,driver一直调用下来。通常情况下就会调用到driver中的prepare函数中。
dpm_suspend函数分析
当对系统中的所有设备调用prepare回调函数之后,就会调用所有设备的suspend回调函数。
int dpm_suspend(pm_message_t state) { ktime_t starttime = ktime_get(); int error = 0; trace_suspend_resume(TPS("dpm_suspend"), state.event, true); might_sleep(); cpufreq_suspend(); mutex_lock(&dpm_list_mtx); pm_transition = state; async_error = 0; while (!list_empty(&dpm_prepared_list)) { struct device *dev = to_device(dpm_prepared_list.prev); get_device(dev); mutex_unlock(&dpm_list_mtx); error = device_suspend(dev); mutex_lock(&dpm_list_mtx); if (error) { pm_dev_err(dev, state, "", error); dpm_save_failed_dev(dev_name(dev)); put_device(dev); break; } if (!list_empty(&dev->power.entry)) list_move(&dev->power.entry, &dpm_suspended_list); put_device(dev); if (async_error) break; } mutex_unlock(&dpm_list_mtx); async_synchronize_full(); if (!error) error = async_error; if (error) { suspend_stats.failed_suspend++; dpm_save_failed_step(SUSPEND_SUSPEND); } else dpm_show_time(starttime, state, NULL); trace_suspend_resume(TPS("dpm_suspend"), state.event, false); return error; }对之前加入dpm_prepared_list链表的设备,调用device_suspend函数。然后该此设备又加入到dpm_suspend_list链表中。如果出现suspend失败,就打印log,更新failed_suspend的值。在调用到device_suspend函数中,会判断是否支持异步suspend操作,这里不关心细节,主要分析主流程,最后调用到__device_suspend函数中。
__device_suspend函数分析
static int __device_suspend(struct device *dev, pm_message_t state, bool async) { pm_callback_t callback = NULL; char *info = NULL; int error = 0; struct timer_list timer; struct dpm_drv_wd_data data; char suspend_abort[MAX_SUSPEND_ABORT_LEN]; DECLARE_DPM_WATCHDOG_ON_STACK(wd); dpm_wait_for_children(dev, async); if (async_error) goto Complete; /* * If a device configured to wake up the system from sleep states * has been suspended at run time and there's a resume request pending * for it, this is equivalent to the device signaling wakeup, so the * system suspend operation should be aborted. */ if (pm_runtime_barrier(dev) && device_may_wakeup(dev)) pm_wakeup_event(dev, 0); if (pm_wakeup_pending()) { pm_get_active_wakeup_sources(suspend_abort, MAX_SUSPEND_ABORT_LEN); log_suspend_abort_reason(suspend_abort); async_error = -EBUSY; goto Complete; } if (dev->power.syscore) goto Complete; data.dev = dev; data.tsk = get_current(); init_timer_on_stack(&timer); timer.expires = jiffies + HZ * 12; timer.function = dpm_drv_timeout; timer.data = (unsigned long)&data; add_timer(&timer); if (dev->power.direct_complete) { if (pm_runtime_status_suspended(dev)) { pm_runtime_disable(dev); if (pm_runtime_suspended_if_enabled(dev)) goto Complete; pm_runtime_enable(dev); } dev->power.direct_complete = false; } dpm_watchdog_set(&wd, dev); device_lock(dev); if (dev->pm_domain) { info = "power domain "; callback = pm_op(&dev->pm_domain->ops, state); goto Run; } if (dev->type && dev->type->pm) { info = "type "; callback = pm_op(dev->type->pm, state); goto Run; } if (dev->class) { if (dev->class->pm) { info = "class "; callback = pm_op(dev->class->pm, state); goto Run; } else if (dev->class->suspend) { pm_dev_dbg(dev, state, "legacy class "); error = legacy_suspend(dev, state, dev->class->suspend, "legacy class "); goto End; } } if (dev->bus) { if (dev->bus->pm) { info = "bus "; callback = pm_op(dev->bus->pm, state); } else if (dev->bus->suspend) { pm_dev_dbg(dev, state, "legacy bus "); error = legacy_suspend(dev, state, dev->bus->suspend, "legacy bus "); goto End; } } Run: if (!callback && dev->driver && dev->driver->pm) { info = "driver "; callback = pm_op(dev->driver->pm, state); } error = dpm_run_callback(callback, dev, state, info); End: if (!error) { struct device *parent = dev->parent; dev->power.is_suspended = true; if (parent) { spin_lock_irq(&parent->power.lock); dev->parent->power.direct_complete = false; if (dev->power.wakeup_path && !dev->parent->power.ignore_children) dev->parent->power.wakeup_path = true; spin_unlock_irq(&parent->power.lock); } } device_unlock(dev); dpm_watchdog_clear(&wd); del_timer_sync(&timer); destroy_timer_on_stack(&timer); Complete: complete_all(&dev->power.completion); if (error) async_error = error; return error; }1. 调用dpm_wait_for_children使用异步等待该设备的所有孩子就绪。
2. 如果此时有wakup事件发生,应该停止系统suspend。
3. 如果没有wakup事件发生,创建一个12s的定时器,然后启动定时器。如果在12s之内suspend没有处理完成,就打印call stack,导致系统panic。
static void dpm_drv_timeout(unsigned long data) { struct dpm_drv_wd_data *wd_data = (void *)data; struct device *dev = wd_data->dev; struct task_struct *tsk = wd_data->tsk; printk(KERN_EMERG "**** DPM device timeout: %s (%s)\n", dev_name(dev), (dev->driver ? dev->driver->name : "no driver")); printk(KERN_EMERG "dpm suspend stack:\n"); show_stack(tsk, NULL); BUG(); }4. 判断该设备是否在suspend之前已经发生了runtime_suspend。如果该设备已经处于suspend则可以直接返回。
5. 依次调用subsystem-level(pm_domain, type, class, bus)级别的suspend回调函数,如果subsystem-level级别的suspend回调函数都没有实现,则调用driver的suspend回调。
6. 销毁之前创建的定时器。
suspend_enter函数分析
suspend_enter函数分析
在之前对dpm_suspend_start函数进行了分析,该函数中主要是调用所有设备的prepare和suspend回调函数。而在suspend_enter主要是使系统进入到suspend中。
static int suspend_enter(suspend_state_t state, bool *wakeup) { char suspend_abort[MAX_SUSPEND_ABORT_LEN]; int error, last_dev; error = platform_suspend_prepare(state); if (error) goto Platform_finish; error = dpm_suspend_late(PMSG_SUSPEND); if (error) { last_dev = suspend_stats.last_failed_dev + REC_FAILED_NUM - 1; last_dev %= REC_FAILED_NUM; printk(KERN_ERR "PM: late suspend of devices failed\n"); log_suspend_abort_reason("%s device failed to power down", suspend_stats.failed_devs[last_dev]); goto Platform_finish; } error = platform_suspend_prepare_late(state); if (error) goto Devices_early_resume; error = dpm_suspend_noirq(PMSG_SUSPEND); if (error) { last_dev = suspend_stats.last_failed_dev + REC_FAILED_NUM - 1; last_dev %= REC_FAILED_NUM; printk(KERN_ERR "PM: noirq suspend of devices failed\n"); log_suspend_abort_reason("noirq suspend of %s device failed", suspend_stats.failed_devs[last_dev]); goto Platform_early_resume; } error = platform_suspend_prepare_noirq(state); if (error) goto Platform_wake; if (suspend_test(TEST_PLATFORM)) goto Platform_wake; /* * PM_SUSPEND_FREEZE equals * frozen processes + suspended devices + idle processors. * Thus we should invoke freeze_enter() soon after * all the devices are suspended. */ if (state == PM_SUSPEND_FREEZE) { trace_suspend_resume(TPS("machine_suspend"), state, true); freeze_enter(); trace_suspend_resume(TPS("machine_suspend"), state, false); goto Platform_wake; } error = disable_nonboot_cpus(); if (error || suspend_test(TEST_CPUS)) { log_suspend_abort_reason("Disabling non-boot cpus failed"); goto Enable_cpus; } arch_suspend_disable_irqs(); BUG_ON(!irqs_disabled()); error = syscore_suspend(); if (!error) { *wakeup = pm_wakeup_pending(); if (!(suspend_test(TEST_CORE) || *wakeup)) { trace_suspend_resume(TPS("machine_suspend"), state, true); error = suspend_ops->enter(state); trace_suspend_resume(TPS("machine_suspend"), state, false); events_check_enabled = false; } else if (*wakeup) { pm_get_active_wakeup_sources(suspend_abort, MAX_SUSPEND_ABORT_LEN); log_suspend_abort_reason(suspend_abort); error = -EBUSY; } syscore_resume(); } arch_suspend_enable_irqs(); BUG_ON(irqs_disabled()); Enable_cpus: enable_nonboot_cpus(); Platform_wake: platform_resume_noirq(state); dpm_resume_noirq(PMSG_RESUME); Platform_early_resume: platform_resume_early(state); Devices_early_resume: dpm_resume_early(PMSG_RESUME); Platform_finish: platform_resume_finish(state); return error; }1. 调用平台相关prepare回调函数,如果平台prepare设置失败,在调用平台相关的finish回调函数。
2. 调用dpm_suspend_late函数。此函数主要调用dpm_suspend_list中的设备的suspend_late回调函数,然后又将这些设备加入到dpm_late_early_list链表中。如果出现失败,则跳到platform_finish做恢复工作。
3. 如果当前休眠状态是PM_SUSPEND_FREEZE的话,调用freeze_ops中的prepare回调。
4. 调用dpm_suspend_noirq函数,此函数主要是从dpm_late_early_list链表中取一个设备,然后调用该设备的suspend_noirq回调,同时将该设备加入到dpm_noirq_list链表中。
5. 回调平台相关的preplate_late函数,做suspend最后关头的事情。
6. 如果休眠状态是PM_SUSPEND_FREEZE,则frozen processes + suspended devices + idle processors
7. disable所有非nonboot的CPU,失败之后启动CPU。
8. 关掉全局cpu中断,如果关掉中断,则报BUG
arch_suspend_disable_irqs(); BUG_ON(!irqs_disabled());9. 执行所有system core的suspend回调函数。
10. 如果执行成功的话,这时候系统还会调用pm_wakeup_pending检查下,是否有唤醒事件发生,如果发生停止suspend,恢复系统。
11. 这时候系统已经睡眠,如果这时候有唤醒事件发生,比如按下手机的power按键,系统又会接着suspend的地方,再次往下执行。也就是suspend的一些列反操作。
suspend/resume过程总结
如下是suspend/resume过程的简图
以上就是整个系统的suspend/resume执行过程,但是对于一般的驱动开发工程师来说主要关心的是Device Suspend和Device Resume过程。
suspend: prepare->suspend->suspend_late->suspend_noirq
resume: resume_noirq->resume_early->resume->complete
作者:longwang155069 发表于2016/10/27 17:10:48 原文链接
阅读:37 评论:0 查看评论