1、egl_init_drivers
Android中OpenGL库加载从egl_init_drivers函数开始,源码位置在frameworks/native/opengl/libs/EGL/egl.cpp。
static pthread_mutex_t sInitDriverMutex = PTHREAD_MUTEX_INITIALIZER;
EGLBoolean egl_init_drivers() {
EGLBoolean res;
pthread_mutex_lock(&sInitDriverMutex);
res = egl_init_drivers_locked();
pthread_mutex_unlock(&sInitDriverMutex);
return res;
}
初始化过程中使用了mutex进行同步保护,下面分析egl_init_drivers_locked。
2、egl_init_drivers_locked
// this mutex protects:
// d->disp[]
// egl_init_drivers_locked()
//
static EGLBoolean egl_init_drivers_locked() {
if (sEarlyInitState) {
// initialized by static ctor. should be set here.
return EGL_FALSE;
}
// get our driver loader
Loader& loader(Loader::getInstance());
// dynamically load our EGL implementation
egl_connection_t* cnx = &gEGLImpl;
if (cnx->dso == 0) {
cnx->hooks[egl_connection_t::GLESv1_INDEX] =
&gHooks[egl_connection_t::GLESv1_INDEX];
cnx->hooks[egl_connection_t::GLESv2_INDEX] =
&gHooks[egl_connection_t::GLESv2_INDEX];
cnx->dso = loader.open(cnx);
}
return cnx->dso ? EGL_TRUE : EGL_FALSE;
}
从上面的egl_init_drivers_locked实现中可以看出OpenGL库最终是通过loader对象完成的,首先看一下sEarlyInitState是何方神圣。
3、sEarlyInitState
static void early_egl_init(void)
{
int numHooks = sizeof(gHooksNoContext) / sizeof(EGLFuncPointer);
EGLFuncPointer *iter = reinterpret_cast<EGLFuncPointer*>(&gHooksNoContext);
for (int hook = 0; hook < numHooks; ++hook) {
*(iter++) = reinterpret_cast<EGLFuncPointer>(gl_no_context);
}
setGLHooksThreadSpecific(&gHooksNoContext);
}
static pthread_once_t once_control = PTHREAD_ONCE_INIT;
static int sEarlyInitState = pthread_once(&once_control, &early_egl_init);
sEarlyInitState为pthread_once的返回值,成功时返回0。pthread_once保证多线程时early_egl_init只执行一次,early_egl_init用来设置线程特有的数据(pthread_setspecific/pthread_getspecific),这也是一种数据共享方式。EGLFuncPointer为函数指针,如下所示:
typedef void (*__eglMustCastToProperFunctionPointerType)(void);
typedef __eglMustCastToProperFunctionPointerType EGLFuncPointer;
gHooksNoContext是个有趣的数据结构,如下所示:
// maximum number of GL extensions that can be used simultaneously in
// a given process. this limitation exists because we need to have
// a static function for each extension and currently these static functions
// are generated at compile time.
#define MAX_NUMBER_OF_GL_EXTENSIONS 256
struct gl_hooks_t {
struct gl_t {
#include "entries.in"
} gl;
struct gl_ext_t {
__eglMustCastToProperFunctionPointerType extensions[MAX_NUMBER_OF_GL_EXTENSIONS];
} ext;
};
extern gl_hooks_t gHooksNoContext;
上面的gl_t结构体实际上包含了同OpenGL函数一致的函数指针,通过“entries.in”和GL_ENTRY进行扩展,如下所示:
#define GL_ENTRY(_r, _api, ...) _r (*(_api))(__VA_ARGS__);
// entries.in
GL_ENTRY(void, glActiveShaderProgram, GLuint pipeline, GLuint program)
GL_ENTRY(void, glActiveShaderProgramEXT, GLuint pipeline, GLuint program)
...
...
gl_no_context用于检查OpenGL函数调用是否设置了Context,其中用到了设置线程键的egl_tls_t类和收集函数调用栈帧的CallStack类。
static int gl_no_context() {
if (egl_tls_t::logNoContextCall()) {
char const* const error = "call to OpenGL ES API with "
"no current context (logged once per thread)";
if (LOG_NDEBUG) {
ALOGE(error);
} else {
LOG_ALWAYS_FATAL(error);
}
char value[PROPERTY_VALUE_MAX];
property_get("debug.egl.callstack", value, "0");
if (atoi(value)) {
CallStack stack(LOG_TAG);
}
}
return 0;
}
随后,将修改过的gHooksNoContext通过setGLHooksThreadSpecific设置线程键,而__get_tls则是通过汇编实现的(不同的硬件有不同的汇编代码),如下所示:
void setGLHooksThreadSpecific(gl_hooks_t const *value) {
setGlThreadSpecific(value);
}
void setGlThreadSpecific(gl_hooks_t const *value) {
gl_hooks_t const * volatile * tls_hooks = get_tls_hooks();
tls_hooks[TLS_SLOT_OPENGL_API] = value;
}
inline gl_hooks_t const * volatile * get_tls_hooks() {
volatile void *tls_base = __get_tls();
gl_hooks_t const * volatile * tls_hooks =
reinterpret_cast<gl_hooks_t const * volatile *>(tls_base);
return tls_hooks;
}
// Well-known TLS slots. What data goes in which slot is arbitrary unless otherwise noted.
enum {
TLS_SLOT_SELF = 0, // The kernel requires this specific slot for x86.
TLS_SLOT_THREAD_ID,
TLS_SLOT_ERRNO,
// These two aren't used by bionic itself, but allow the graphics code to
// access TLS directly rather than using the pthread API.
TLS_SLOT_OPENGL_API = 3,
TLS_SLOT_OPENGL = 4,
// This slot is only used to pass information from the dynamic linker to
// libc.so when the C library is loaded in to memory. The C runtime init
// function will then clear it. Since its use is extremely temporary,
// we reuse an existing location that isn't needed during libc startup.
TLS_SLOT_BIONIC_PREINIT = TLS_SLOT_OPENGL_API,
TLS_SLOT_STACK_GUARD = 5, // GCC requires this specific slot for x86.
TLS_SLOT_DLERROR,
// Fast storage for Thread::Current() in ART.
TLS_SLOT_ART_THREAD_SELF,
// Lets TSAN avoid using pthread_getspecific for finding the current thread
// state.
TLS_SLOT_TSAN,
BIONIC_TLS_SLOTS // Must come last!
};
4、egl_connection_t
在分析Loader前先来看一下egl_connection_t,其结构如下所示:
extern egl_connection_t gEGLImpl;
extern gl_hooks_t gHooks[2];
struct egl_connection_t {
enum {
GLESv1_INDEX = 0,
GLESv2_INDEX = 1
};
inline egl_connection_t() : dso(0) { }
void * dso;
gl_hooks_t * hooks[2];
EGLint major;
EGLint minor;
egl_t egl;
void* libEgl;
void* libGles1;
void* libGles2;
};
从上面的egl_connection_t结构体及前面的egl_init_drivers_locked函数定义可以看出,包括两个hook,GLESv1和GLESv2,而dso则实际上指向了libEGL、libGLESv1和libGLESv2(从后面的Loader分析中可以看出),egl_t类似于gl_t,包含了一系列egl函数指针。下面着重分析Loader。
5、Loader-open
Loader是个单实例,如下所示:
class Loader : public Singleton<Loader>
从Loader::open开始,包括两部分,load_driver和load_wrapper,如下所示:
void* Loader::open(egl_connection_t* cnx)
{
void* dso;
driver_t* hnd = 0;
setEmulatorGlesValue();
dso = load_driver("GLES", cnx, EGL | GLESv1_CM | GLESv2);
if (dso) {
hnd = new driver_t(dso);
} else {
// Always load EGL first
dso = load_driver("EGL", cnx, EGL);
if (dso) {
hnd = new driver_t(dso);
hnd->set( load_driver("GLESv1_CM", cnx, GLESv1_CM), GLESv1_CM );
hnd->set( load_driver("GLESv2", cnx, GLESv2), GLESv2 );
}
}
LOG_ALWAYS_FATAL_IF(!hnd, "couldn't find an OpenGL ES implementation");
cnx->libEgl = load_wrapper(EGL_WRAPPER_DIR "/libEGL.so");
cnx->libGles2 = load_wrapper(EGL_WRAPPER_DIR "/libGLESv2.so");
cnx->libGles1 = load_wrapper(EGL_WRAPPER_DIR "/libGLESv1_CM.so");
LOG_ALWAYS_FATAL_IF(!cnx->libEgl,
"couldn't load system EGL wrapper libraries");
LOG_ALWAYS_FATAL_IF(!cnx->libGles2 || !cnx->libGles1,
"couldn't load system OpenGL ES wrapper libraries");
return (void*)hnd;
}
在分析load_driver和load_wrapper之前,先来看一下driver_t,这是个Loader类的内部结构体,如下所示:
struct driver_t {
explicit driver_t(void* gles);
~driver_t();
status_t set(void* hnd, int32_t api);
void* dso[3];
};
driver_t的dso分别保存了EGL、GLESv1_CM和GLESv2三个库。open函数中还调用了setEmulatorGlesValue,这个函数就是检查、设置一些模拟器属性(是否在模拟器中运行?在模拟中运行时是否有GPU支持?),比较简单,代码如下:
static void setEmulatorGlesValue(void) {
char prop[PROPERTY_VALUE_MAX];
property_get("ro.kernel.qemu", prop, "0");
if (atoi(prop) != 1) return;
property_get("ro.kernel.qemu.gles",prop,"0");
if (atoi(prop) == 1) {
ALOGD("Emulator has host GPU support, qemu.gles is set to 1.");
property_set("qemu.gles", "1");
return;
}
// for now, checking the following
// directory is good enough for emulator system images
const char* vendor_lib_path =
#if defined(__LP64__)
"/vendor/lib64/egl";
#else
"/vendor/lib/egl";
#endif
const bool has_vendor_lib = (access(vendor_lib_path, R_OK) == 0);
if (has_vendor_lib) {
ALOGD("Emulator has vendor provided software renderer, qemu.gles is set to 2.");
property_set("qemu.gles", "2");
} else {
ALOGD("Emulator without GPU support detected. "
"Fallback to legacy software renderer, qemu.gles is set to 0.");
property_set("qemu.gles", "0");
}
}
6、Loader-load_driver
void *Loader::load_driver(const char* kind, egl_connection_t* cnx, uint32_t mask)
{
class MatchFile {};
...
}
EGL驱动需要提供一个单一的库libGLES.so,或者是三个分开的库libEGL.so、libGLESv1_CM.so和libGLESv2.so,模拟器中的软描画则需要提供单一的库libGLES_android.so,为了兼容旧版本的“egl.cfg”文件配置,这几个库后面还可能加一个名称如_emulation。在load_driver函数中还有个内部类MatchFile,用于在某个lib目录中查找特定的OpenGL库是否存在,存在的话进而通过dlopen打开,dlopen成功后再通过dlsym逐个获取OpenGL所有API的地址并将它们保存下来。
7、load_wrapper
load_wrapper相对load_driver来说较简单,就是dlopen一个so,如下所示:
static void* load_wrapper(const char* path) {
void* so = dlopen(path, RTLD_NOW | RTLD_LOCAL);
ALOGE_IF(!so, "dlopen(\"%s\") failed: %s", path, dlerror());
return so;
}