因为Android的编译系统不同于Linux Kernel的递归式的编译系统,它的编译系统是一种称之为independent的模式,每个模块基本独立(它有可能依赖其他模块),每个模块都可以单独编译,这是Android independent编译系统模式的好处。但这并不意味着它是完美的,普通电脑编译android系统需要8个小时甚至更多(以本人的电脑为例),而编译linux kernel只需要半个小时,代码量是一回事,由independent模式造成的编译时间长应该是可以肯定的。正因为每个模块可以单独编译,所以android系统的编译就是依次编译每个模块,然后把所有编译好的模块和其他一些文件一起打包成镜像文件。因此,只要理解了每个模块的编译,理解android系统的编译就轻松多了。(以上均是个人观点,欢迎拍砖)
在我们source build/envsetup.sh 和 lunch 后,就可以执行mm命令编译单个模块了:
所以,编译的其实位置从mm说起:
function mm() { local T=$(gettop) local DRV=$(getdriver $T) # If we're sitting in the root of the build tree, just do a # normal make. if [ -f build/core/envsetup.mk -a -f Makefile ]; then $DRV make $@ else # Find the closest Android.mk file. local M=$(findmakefile) local MODULES= local GET_INSTALL_PATH= local ARGS= # Remove the path to top as the makefilepath needs to be relative local M=`echo $M|sed 's:'$T'/::'` if [ ! "$T" ]; then echo "Couldn't locate the top of the tree. Try setting TOP." return 1 elif [ ! "$M" ]; then echo "Couldn't locate a makefile from the current directory." return 1 else for ARG in $@; do case $ARG in GET-INSTALL-PATH) GET_INSTALL_PATH=$ARG;; esac done if [ -n "$GET_INSTALL_PATH" ]; then MODULES= ARGS=GET-INSTALL-PATH else MODULES=all_modules ARGS=$@ fi ONE_SHOT_MAKEFILE=$M $DRV make -C $T -f build/core/main.mk $MODULES $ARGS fi fi }
这个函数做了三件事情:1.找到Android.mk文件,2.设置ONE_SHOT_MAKEFILE=$M,3.执行make all_modules进行编译
1.findmakefile:
function findmakefile() { TOPFILE=build/core/envsetup.mk local HERE=$PWD T= while [ \( ! \( -f $TOPFILE \) \) -a \( $PWD != "/" \) ]; do T=`PWD= /bin/pwd` if [ -f "$T/Android.mk" ]; then echo $T/Android.mk \cd $HERE return fi \cd .. done \cd $HERE }这个函数首先在当前目录下查找Android.mk,如果没有就向上查找。
2.ONE_SHOT_MAKEFILE=$M
$M = $(findmakefile),所以它就是用来编译的那个模块的Android.mk,一般情况下,如果你在当前目录下执行mm,而且当前目录下如果有个Android.mk的话,那她就是这个Android.mk的路劲+Android.mk了。
3.make -C $T -f build/core/main.mk $MODULES $ARGS
-C $T表明还是在源码顶级目录下执行make的,传入的参数一个是$MODULES=all_modules,$ARGS为空
这个时候,代码机会执行顶级的Makefile:
### DO NOT EDIT THIS FILE ### include build/core/main.mk ### DO NOT EDIT THIS FILE ###
加载main.mk
main.mk往下加载,不久我们就看到了我们在mm函数中设置的ONE_SHOT_MAKEFILE变量了:
ifneq ($(ONE_SHOT_MAKEFILE),) # We've probably been invoked by the "mm" shell function # with a subdirectory's makefile. include $(ONE_SHOT_MAKEFILE) # Change CUSTOM_MODULES to include only modules that were # defined by this makefile; this will install all of those # modules as a side-effect. Do this after including ONE_SHOT_MAKEFILE # so that the modules will be installed in the same place they # would have been with a normal make. CUSTOM_MODULES := $(sort $(call get-tagged-modules,$(ALL_MODULE_TAGS))) FULL_BUILD := # Stub out the notice targets, which probably aren't defined # when using ONE_SHOT_MAKEFILE. NOTICE-HOST-%: ; NOTICE-TARGET-%: ; # A helper goal printing out install paths .PHONY: GET-INSTALL-PATH GET-INSTALL-PATH: @$(foreach m, $(ALL_MODULES), $(if $(ALL_MODULES.$(m).INSTALLED), \ echo 'INSTALL-PATH: $(m) $(ALL_MODULES.$(m).INSTALLED)';)) else # ONE_SHOT_MAKEFILE这里判断ONE_SHOT_MAKEFILE是否为空,当然不为空了。紧接着开始加载这个Android.mk,也就是我们要编译的那个Android.mk。简单起见,这里以frameworks/base/cmds/screencap模块的编译为例,它的内容如下:
LOCAL_PATH:= $(call my-dir) include $(CLEAR_VARS) LOCAL_SRC_FILES:= \ screencap.cpp LOCAL_SHARED_LIBRARIES := \ libcutils \ libutils \ libbinder \ libskia \ libui \ libgui LOCAL_MODULE:= screencap LOCAL_MODULE_TAGS := optional LOCAL_CFLAGS += -Wall -Werror -Wunused -Wunreachable-code include $(BUILD_EXECUTABLE)它的变量非常少,这很有利于我们搞清它编译的过程。include 这个Android.mk后,又include $(CLEAR_VARS)
core/config.mk:69:CLEAR_VARS:= $(BUILD_SYSTEM)/clear_vars.mkCLEAR_VARS定义在config.mk文件中,它指向一个clear_vars.mk文件:
LOCAL_MODULE:= LOCAL_MODULE_PATH:= LOCAL_MODULE_RELATIVE_PATH := LOCAL_MODULE_STEM:= LOCAL_DONT_CHECK_MODULE:= LOCAL_CHECKED_MODULE:= LOCAL_BUILT_MODULE:= LOCAL_BUILT_MODULE_STEM:=
。。。这个文件就是把一大堆的文件置为空,除了LOCAL_PATH变量之外。
接着,它有include BUILD_EXTABLE指向的脚本。
core/config.mk:74:BUILD_EXECUTABLE:= $(BUILD_SYSTEM)/executable.mkBUILD_EXTABLE变量也定义在config.mk中,它指向的excutable.mk脚本内容如下:
关于阅读Makefile,个人观点就是紧追依赖链。我们执行的make的时候不是传了一个目标叫all_mudules了吗?所以make就会从它开始推导依赖关系,然后从依赖链的最叶子的位置生成目标,一次向上。所以那就看看all_modules:
# phony target that include any targets in $(ALL_MODULES) .PHONY: all_modules ifndef BUILD_MODULES_IN_PATHS all_modules: $(ALL_MODULES) else # BUILD_MODULES_IN_PATHS is a list of paths relative to the top of the tree module_path_patterns := $(foreach p, $(BUILD_MODULES_IN_PATHS),\ $(if $(filter %/,$(p)),$(p)%,$(p)/%)) my_all_modules := $(sort $(foreach m, $(ALL_MODULES),$(if $(filter\ $(module_path_patterns), $(addsuffix /,$(ALL_MODULES.$(m).PATH))),$(m)))) all_modules: $(my_all_modules) endifall_modules的依赖取决于有没有定义BUILD_MODULES_IN_PATHS,然而我们并有定义它,所以它就all_modules的依赖就是$(ALL_MODULES)。
至此,就需要我们一步步推导依赖关系了,为方便理解,现直接把依赖关系以图的形式列出:
由于一张显示不完,$(linked_module)的依赖如下:
图中的变量未经推导,为了方便对比,推导出变量的值后的图如下:
$(linked_module):
从图中可以看到最终生成的文件有:
out/target/product/xxx/obj/excutable/screepcap__intermediates/screencap
out/target/product/xxx/symbols/system/bin/screencap
out/target/product/xxx/obj/excutable/screepcap__intermediates/PACKED/screencap
out/target/product/xxx/obj/excutable/screepcap__intermediates/LINKED/screencap
out/target/product/xxx/obj/excutable/screepcap__intermediates/screencap.o
out/target/product/xxx/obj/excutable/screepcap__intermediates/export_includes out/target/product/xxx/obj/excutable/screepcap__intermediates/import_includes
至于变量的推导过程,大家顺着文件加载的顺序慢慢推导就是了,这个过程可能比较花时间,但也是没办法的事。
以下是一些重要文件的加载顺序(只有部分比较重要的):
画圈的是我认为非常重要的文件。
在所有依赖生成以后,Android是怎么编译某个模块的呢?
以下是我认为的核心代码,代码在dynamic_binary.mk中:
$(linked_module): $(my_target_crtbegin_dynamic_o) $(all_objects) $(all_libraries) $(my_target_crtend_o) $(transform-o-to-executable)还记得我们推导出来的linked_module的值吗?它等于:
out/target/product/xxx/obj/excutable/screepcap__intermediates/LINKED/screencap
生成这个文件后,从依赖关系上也可以看出,其他文件在此基础上生成,而这个文件使用transform-o-to-executable函数生成,该函数定义如下:
define transform-o-to-executable @mkdir -p $(dir $@) @echo "target Executable: $(PRIVATE_MODULE) ($@)" $(transform-o-to-executable-inner) endef调用transform-o-to-executable-inner函数进一步处理:
define transform-o-to-executable-inner $(hide) $(PRIVATE_CXX) -pie \ -nostdlib -Bdynamic \ -Wl,-dynamic-linker,$($(PRIVATE_2ND_ARCH_VAR_PREFIX)TARGET_LINKER) \ -Wl,--gc-sections \ -Wl,-z,nocopyreloc \ $(PRIVATE_TARGET_GLOBAL_LD_DIRS) \ -Wl,-rpath-link=$(PRIVATE_TARGET_OUT_INTERMEDIATE_LIBRARIES) \ $(if $(filter true,$(PRIVATE_NO_CRT)),,$(PRIVATE_TARGET_CRTBEGIN_DYNAMIC_O)) \ $(PRIVATE_ALL_OBJECTS) \ -Wl,--whole-archive \ $(call normalize-target-libraries,$(PRIVATE_ALL_WHOLE_STATIC_LIBRARIES)) \ -Wl,--no-whole-archive \ $(if $(PRIVATE_GROUP_STATIC_LIBRARIES),-Wl$(comma)--start-group) \ $(call normalize-target-libraries,$(PRIVATE_ALL_STATIC_LIBRARIES)) \ $(if $(PRIVATE_GROUP_STATIC_LIBRARIES),-Wl$(comma)--end-group) \ $(if $(filter true,$(NATIVE_COVERAGE)),$(PRIVATE_TARGET_LIBGCOV)) \ $(if $(filter true,$(NATIVE_COVERAGE)),$(PRIVATE_TARGET_LIBPROFILE_RT)) \ $(PRIVATE_TARGET_LIBATOMIC) \ $(PRIVATE_TARGET_LIBGCC) \ $(call normalize-target-libraries,$(PRIVATE_ALL_SHARED_LIBRARIES)) \ -o $@ \ $(PRIVATE_TARGET_GLOBAL_LDFLAGS) \ $(PRIVATE_LDFLAGS) \ $(if $(filter true,$(PRIVATE_NO_CRT)),,$(PRIVATE_TARGET_CRTEND_O)) \ $(PRIVATE_LDLIBS) endef
这个函数使用clang编译器,最终生成了$(linked_module)目标。
而从$(linked_module)生成out/target/product/xxx/obj/excutable/screepcap__intermediates/PACKED/screencap则使用了如下方法:
$(relocation_packer_output): $(relocation_packer_input) | $(ACP) @echo "target Unpacked: $(PRIVATE_MODULE) ($@)" $(copy-file-to-target) endifcopy-file-to-target定义如下:
define copy-file-to-target @mkdir -p $(dir $@) $(hide) $(ACP) -fp $< $@ endef
可以看就是一个简单的拷贝,所以这两个文件并没有什么不同。
生成out/target/product/xxx/symbols/system/bin/screencap也是在$(linked_module)的基础上做拷贝:
$(symbolic_output) : $(symbolic_input) | $(ACP) @echo "target Symbolic: $(PRIVATE_MODULE) ($@)" $(copy-file-to-target)浏览其他几个screencap文件的生成方法发现,其他几个screencap文件都是在$(linked_module)基础上拷贝而来,而$(linked_module)文件则使用transform-o-to-executable编译生成。因此,到这里一个完整的可执行文件的编译就告一段落了。编译apk、共享库等其他模块的思路都与之类似,正所谓触类旁通,只要完整掌握了一种类型模块的编译,其他类型的模块编译都变得容易理解了。