本文博客地址:http://blog.csdn.net/qq1084283172/article/details/54233552
移动端Android安全的发展,催生了各种Android加固的诞生,基于ELF文件的特性,很多的加固厂商在进行Android逆向的对抗的时,都会在Android的so文件中进行动态的对抗,对抗的点一般在so文件的.init段和JNI_OnLoad处。因此,我们在逆向分析各种厂商的加固so时,需要在so文件的.init段和JNI_OnLoad处下断点进行分析,过掉这些加固的so对抗。
一、如何向.init和.init_array段添加自定义的函数
so共享库文件的高级特性
在so共享库文件动态加载时,有一次执行代码的机会:
[1] so加载时构造函数,在函数声明时加上"__attribute__((constructor))"属性
void __attribute__((constructor)) init_function(void)
{
// to do
}
对应有so卸载时析构函数,在程序exit()或者dlclose()返回前执行
void __attribute__((destructor)) fini_function(void)
{
// to do
}
[2] c++全局对象初始化,其构造函数(对象)被自动执行
在Android NDK编程中,.init段和.init_array段函数的定义方式:
extern "C" void _init(void) { } -------》编译生成后在.init段 __attribute__((constructor)) void _init(void) { } -------》编译生成后在.init_array段 说明下,带构造函数的全局对象生成的时在在.init_array段里面。
参考连接:
《UNIX系统编程手册》
【求助】JNI编程,怎么在native中定义_init段呢?
http://www.blogfshare.com/linker-load-so.html
http://blog.csdn.net/qq1084283172/article/details/54095995
http://blog.csdn.net/l173864930/article/details/38456313
二、向Android JNI的JNI_OnLoad添加自定义的代码
在Android的jni编程中,native函数实现的jni映射,既可以根据jni函数的编写协议编写jni函数,让java虚拟机在加载so库文件时,根据函数签名逐一检索,将各个native方法与相应的java本地函数映射起来(增加运行的时间,降低运行的效率)也可以调用jni机制提供的RegisterNatives()函数手动将jni本地方法和java类的本地方法直接映射起来,需要开发者自定义实现JNI_OnLoad()函数;当so库文件被加载时,JNI_OnLoad()函数会被调用,实现jni本地方法和java类的本地方法的直接映射。
根据jni函数的编写协议,实现java本地方法和jni本地方法的映射
使用JNI_OnLoad的执行,调用RegisterNatives()函数实现java本地方法和jni本地方法的映射
三、在so库文件中定义的.init和.init_array段处函数的执行
Android4.4.4r1的源码\bionic\linker\dlfcn.cpp:
// dlopen函数调用do_dlopen函数实现so库文件的加载 void* dlopen(const char* filename, int flags) { // 信号互斥量(锁) ScopedPthreadMutexLocker locker(&gDlMutex); // 调用do_dlopen()函数实现so库文件的加载 soinfo* result = do_dlopen(filename, flags); // 判断so库文件是否加载成功 if (result == NULL) { __bionic_format_dlerror("dlopen failed", linker_get_error_buffer()); return NULL; } // 返回加载后so库文件的文件句柄 return result; }
// 实现对so库文件的加载和执行构造函数 soinfo* do_dlopen(const char* name, int flags) { // 判断加载so文件的flags是否 if ((flags & ~(RTLD_NOW|RTLD_LAZY|RTLD_LOCAL|RTLD_GLOBAL)) != 0) { DL_ERR("invalid flags to dlopen: %x", flags); return NULL; } // 修改内存属性为可读可写 set_soinfo_pool_protection(PROT_READ | PROT_WRITE); // find_library会判断so是否已经加载, // 如果没有加载,对so进行加载,完成一些初始化工作 soinfo* si = find_library(name); // 判断so库问价是否加载成功 if (si != NULL) { // ++++++ so加载成功,调用构造函数 ++++++++ si->CallConstructors(); // ++++++++++++++++++++++++++++++++++++++++ } // 设置内存属性为可读 set_soinfo_pool_protection(PROT_READ); // 返回so内存模块 return si; }
这里的DT_INIT和DT_INIT_ARRAY到底是什么呢? init_func和init_array都是结构体soinfo的成员变量,在soinfo_link_image加载so的时候进行赋值。 #define DT_INIT 12 /* Address of initialization function */ #define DT_INIT_ARRAY 25 /* Address of initialization function array */ case DT_INIT: si->init_func = reinterpret_cast<linker_function_t>(base + d->d_un.d_ptr); DEBUG(“%s constructors (DT_INIT) found at %p”, si->name, si->init_func); break; case DT_INIT_ARRAY: si->init_array = reinterpret_cast<linker_function_t*>(base + d->d_un.d_ptr); DEBUG(“%s constructors (DT_INIT_ARRAY) found at %p”, si->name, si->init_array); break;
先调用.init段的构造函数再调用.init_array段的构造函数
// so库文件加载完毕以后调用构造函数 void soinfo::CallConstructors() { if (constructors_called) { return; } // We set constructors_called before actually calling the constructors, otherwise it doesn't // protect against recursive constructor calls. One simple example of constructor recursion // is the libc debug malloc, which is implemented in libc_malloc_debug_leak.so: // 1. The program depends on libc, so libc's constructor is called here. // 2. The libc constructor calls dlopen() to load libc_malloc_debug_leak.so. // 3. dlopen() calls the constructors on the newly created // soinfo for libc_malloc_debug_leak.so. // 4. The debug .so depends on libc, so CallConstructors is // called again with the libc soinfo. If it doesn't trigger the early- // out above, the libc constructor will be called again (recursively!). constructors_called = true; if ((flags & FLAG_EXE) == 0 && preinit_array != NULL) { // The GNU dynamic linker silently ignores these, but we warn the developer. PRINT("\"%s\": ignoring %d-entry DT_PREINIT_ARRAY in shared library!", name, preinit_array_count); } // 调用DT_NEEDED类型段的构造函数 if (dynamic != NULL) { for (Elf32_Dyn* d = dynamic; d->d_tag != DT_NULL; ++d) { if (d->d_tag == DT_NEEDED) { const char* library_name = strtab + d->d_un.d_val; TRACE("\"%s\": calling constructors in DT_NEEDED \"%s\"", name, library_name); find_loaded_library(library_name)->CallConstructors(); } } } TRACE("\"%s\": calling constructors", name); // DT_INIT should be called before DT_INIT_ARRAY if both are present. // 先调用.init段的构造函数 CallFunction("DT_INIT", init_func); // 再调用.init_array段的构造函数 CallArray("DT_INIT_ARRAY", init_array, init_array_count, false); }
// 构造函数调用的实现 void soinfo::CallFunction(const char* function_name UNUSED, linker_function_t function) { // 判断构造函数的调用地址是否符合要求 if (function == NULL || reinterpret_cast<uintptr_t>(function) == static_cast<uintptr_t>(-1)) { return; } // function_name被调用的函数名称,function为函数的调用地址 // [ Calling %s @ %p for '%s' ] 字符串为在 /system/bin/linker 中查找.init和.init_array段调用函数的关键 TRACE("[ Calling %s @ %p for '%s' ]", function_name, function, name); // 调用function函数 function(); TRACE("[ Done calling %s @ %p for '%s' ]", function_name, function, name); // The function may have called dlopen(3) or dlclose(3), so we need to ensure our data structures // are still writable. This happens with our debug malloc (see http://b/7941716). set_soinfo_pool_protection(PROT_READ | PROT_WRITE); }
.init_arrayt段构造函数的调用实现
void soinfo::CallArray(const char* array_name UNUSED, linker_function_t* functions, size_t count, bool reverse) { if (functions == NULL) { return; } TRACE("[ Calling %s (size %d) @ %p for '%s' ]", array_name, count, functions, name); int begin = reverse ? (count - 1) : 0; int end = reverse ? -1 : count; int step = reverse ? -1 : 1; // 循环遍历调用.init_arrayt段中每个函数 for (int i = begin; i != end; i += step) { TRACE("[ %s[%d] == %p ]", array_name, i, functions[i]); // .init_arrayt段中,每个函数指针的调用和上面的.init段的构造函数的实现是一样的 CallFunction("function", functions[i]); } TRACE("[ Done calling %s for '%s' ]", array_name, name); }
四、Android jni中JNI_OnLoad函数的执行
Android4.4.4r1的源码/libcore/luni/src/main/java/java/lang/System.java
/** * Loads and links the library with the specified name. The mapping of the * specified library name to the full path for loading the library is * implementation-dependent. * * @param libName * the name of the library to load. * @throws UnsatisfiedLinkError * if the library could not be loaded. */ // System.loadLibrary函数加载libxxx.so库文件 public static void loadLibrary(String libName) { // 调用Runtime.loadLibrary函数实现libxxx.so库文件的加载 Runtime.getRuntime().loadLibrary(libName, VMStack.getCallingClassLoader()); }
Android4.4.4r1的源码/libcore/luni/src/main/java/java/lang/Runtime.java
/** * Loads and links the library with the specified name. The mapping of the * specified library name to the full path for loading the library is * implementation-dependent. * * @param libName * the name of the library to load. * @throws UnsatisfiedLinkError * if the library can not be loaded. */ public void loadLibrary(String libName) { loadLibrary(libName, VMStack.getCallingClassLoader()); } /* * Searches for a library, then loads and links it without security checks. */ void loadLibrary(String libraryName, ClassLoader loader) { if (loader != null) { String filename = loader.findLibrary(libraryName); if (filename == null) { throw new UnsatisfiedLinkError("Couldn't load " + libraryName + " from loader " + loader + ": findLibrary returned null"); } String error = doLoad(filename, loader); if (error != null) { throw new UnsatisfiedLinkError(error); } return; } String filename = System.mapLibraryName(libraryName); List<String> candidates = new ArrayList<String>(); String lastError = null; for (String directory : mLibPaths) { String candidate = directory + filename; candidates.add(candidate); if (IoUtils.canOpenReadOnly(candidate)) { // 调用doLoad函数加载so库文件 String error = doLoad(candidate, loader); if (error == null) { return; // We successfully loaded the library. Job done. } lastError = error; } } if (lastError != null) { throw new UnsatisfiedLinkError(lastError); } throw new UnsatisfiedLinkError("Library " + libraryName + " not found; tried " + candidates); }
private String doLoad(String name, ClassLoader loader) { // Android apps are forked from the zygote, so they can't have a custom LD_LIBRARY_PATH, // which means that by default an app's shared library directory isn't on LD_LIBRARY_PATH. // The PathClassLoader set up by frameworks/base knows the appropriate path, so we can load // libraries with no dependencies just fine, but an app that has multiple libraries that // depend on each other needed to load them in most-dependent-first order. // We added API to Android's dynamic linker so we can update the library path used for // the currently-running process. We pull the desired path out of the ClassLoader here // and pass it to nativeLoad so that it can call the private dynamic linker API. // We didn't just change frameworks/base to update the LD_LIBRARY_PATH once at the // beginning because multiple apks can run in the same process and third party code can // use its own BaseDexClassLoader. // We didn't just add a dlopen_with_custom_LD_LIBRARY_PATH call because we wanted any // dlopen(3) calls made from a .so's JNI_OnLoad to work too. // So, find out what the native library search path is for the ClassLoader in question... String ldLibraryPath = null; if (loader != null && loader instanceof BaseDexClassLoader) { // so库文件的文件路径 ldLibraryPath = ((BaseDexClassLoader) loader).getLdLibraryPath(); } // nativeLoad should be synchronized so there's only one LD_LIBRARY_PATH in use regardless // of how many ClassLoaders are in the system, but dalvik doesn't support synchronized // internal natives. synchronized (this) { // 调用native方法nativeLoad加载so库文件 return nativeLoad(name, loader, ldLibraryPath); } } // TODO: should be synchronized, but dalvik doesn't support synchronized internal natives. // 函数nativeLoad为native方法实现的 private static native String nativeLoad(String filename, ClassLoader loader, String ldLibraryPath);
nativeLoad函数在Android4.4.4r1源码/dalvik/vm/native/java_lang_Runtime.cpp中的实现
/* * static String nativeLoad(String filename, ClassLoader loader, String ldLibraryPath) * * Load the specified full path as a dynamic library filled with * JNI-compatible methods. Returns null on success, or a failure * message on failure. */ /* * 参数args[0]保存的是一个Java层的String对象,这个String对象描述的就是要加载的so文件, * 函数Dalvik_java_lang_Runtime_nativeLoad首先是调用函数dvmCreateCstrFromString来将它转换成一个C++层的字符串fileName, * 然后再调用函数dvmLoadNativeCode来执行加载so文件的操作。 */ static void Dalvik_java_lang_Runtime_nativeLoad(const u4* args, JValue* pResult) { StringObject* fileNameObj = (StringObject*) args[0]; Object* classLoader = (Object*) args[1]; StringObject* ldLibraryPathObj = (StringObject*) args[2]; assert(fileNameObj != NULL); char* fileName = dvmCreateCstrFromString(fileNameObj); if (ldLibraryPathObj != NULL) { char* ldLibraryPath = dvmCreateCstrFromString(ldLibraryPathObj); void* sym = dlsym(RTLD_DEFAULT, "android_update_LD_LIBRARY_PATH"); if (sym != NULL) { typedef void (*Fn)(const char*); Fn android_update_LD_LIBRARY_PATH = reinterpret_cast<Fn>(sym); (*android_update_LD_LIBRARY_PATH)(ldLibraryPath); } else { ALOGE("android_update_LD_LIBRARY_PATH not found; .so dependencies will not work!"); } free(ldLibraryPath); } StringObject* result = NULL; char* reason = NULL; // 调用dvmLoadNativeCode函数加载so库文件 bool success = dvmLoadNativeCode(fileName, classLoader, &reason); if (!success) { const char* msg = (reason != NULL) ? reason : "unknown failure"; result = dvmCreateStringFromCstr(msg); dvmReleaseTrackedAlloc((Object*) result, NULL); } free(reason); free(fileName); RETURN_PTR(result); }
nativeLoad函数的本地方法实现Dalvik_java_lang_Runtime_nativeLoad()函数最终调用Android4.4.4r1源码/dalvik/vm/Native.cpp中的dvmLoadNativeCode()函数,在该函数中先调用dlopen函数加载so库文件到内存中,然后调用dlsym函数获取so库文件中JNI_OnLoad函数的导出地址,然后调用JNI_OnLoad函数执行开发者自定义的代码和实现jni函数的注册。
typedef int (*OnLoadFunc)(JavaVM*, void*); /* * Load native code from the specified absolute pathname. Per the spec, * if we've already loaded a library with the specified pathname, we * return without doing anything. * * TODO? for better results we should absolutify the pathname. For fully * correct results we should stat to get the inode and compare that. The * existing implementation is fine so long as everybody is using * System.loadLibrary. * * The library will be associated with the specified class loader. The JNI * spec says we can't load the same library into more than one class loader. * * Returns "true" on success. On failure, sets *detail to a * human-readable description of the error or NULL if no detail is * available; ownership of the string is transferred to the caller. */ bool dvmLoadNativeCode(const char* pathName, Object* classLoader, char** detail) { SharedLib* pEntry; void* handle; bool verbose; /* reduce noise by not chattering about system libraries */ verbose = !!strncmp(pathName, "/system", sizeof("/system")-1); verbose = verbose && !!strncmp(pathName, "/vendor", sizeof("/vendor")-1); if (verbose) ALOGD("Trying to load lib %s %p", pathName, classLoader); *detail = NULL; /* * See if we've already loaded it. If we have, and the class loader * matches, return successfully without doing anything. */ pEntry = findSharedLibEntry(pathName); if (pEntry != NULL) { if (pEntry->classLoader != classLoader) { ALOGW("Shared lib '%s' already opened by CL %p; can't open in %p", pathName, pEntry->classLoader, classLoader); return false; } if (verbose) { ALOGD("Shared lib '%s' already loaded in same CL %p", pathName, classLoader); } if (!checkOnLoadResult(pEntry)) return false; return true; } /* * Open the shared library. Because we're using a full path, the system * doesn't have to search through LD_LIBRARY_PATH. (It may do so to * resolve this library's dependencies though.) * * Failures here are expected when java.library.path has several entries * and we have to hunt for the lib. * * The current version of the dynamic linker prints detailed information * about dlopen() failures. Some things to check if the message is * cryptic: * - make sure the library exists on the device * - verify that the right path is being opened (the debug log message * above can help with that) * - check to see if the library is valid (e.g. not zero bytes long) * - check config/prelink-linux-arm.map to ensure that the library * is listed and is not being overrun by the previous entry (if * loading suddenly stops working on a prelinked library, this is * a good one to check) * - write a trivial app that calls sleep() then dlopen(), attach * to it with "strace -p <pid>" while it sleeps, and watch for * attempts to open nonexistent dependent shared libs * * This can execute slowly for a large library on a busy system, so we * want to switch from RUNNING to VMWAIT while it executes. This allows * the GC to ignore us. */ Thread* self = dvmThreadSelf(); ThreadStatus oldStatus = dvmChangeStatus(self, THREAD_VMWAIT); // 先调用dlopen函数加载so库文件到内存中 handle = dlopen(pathName, RTLD_LAZY); dvmChangeStatus(self, oldStatus); if (handle == NULL) { *detail = strdup(dlerror()); ALOGE("dlopen(\"%s\") failed: %s", pathName, *detail); return false; } /* create a new entry */ SharedLib* pNewEntry; pNewEntry = (SharedLib*) calloc(1, sizeof(SharedLib)); pNewEntry->pathName = strdup(pathName); pNewEntry->handle = handle; pNewEntry->classLoader = classLoader; dvmInitMutex(&pNewEntry->onLoadLock); pthread_cond_init(&pNewEntry->onLoadCond, NULL); pNewEntry->onLoadThreadId = self->threadId; /* try to add it to the list */ SharedLib* pActualEntry = addSharedLibEntry(pNewEntry); if (pNewEntry != pActualEntry) { ALOGI("WOW: we lost a race to add a shared lib (%s CL=%p)", pathName, classLoader); freeSharedLibEntry(pNewEntry); return checkOnLoadResult(pActualEntry); } else { if (verbose) ALOGD("Added shared lib %s %p", pathName, classLoader); bool result = false; void* vonLoad; int version; // 获取前面加载的so库文件中的导出函数JNI_OnLoad的调用地址 vonLoad = dlsym(handle, "JNI_OnLoad"); // 判断导出函数JNI_OnLoad的调用地址是否为null if (vonLoad == NULL) { ALOGD("No JNI_OnLoad found in %s %p, skipping init", pathName, classLoader); result = true; } else { // 获取前面加载的so库文件中的导出函数JNI_OnLoad的调用地址成功 /* * Call JNI_OnLoad. We have to override the current class * loader, which will always be "null" since the stuff at the * top of the stack is around Runtime.loadLibrary(). (See * the comments in the JNI FindClass function.) */ // 保存获取到的JNI_OnLoad函数的调用地址 OnLoadFunc func = (OnLoadFunc)vonLoad; Object* prevOverride = self->classLoaderOverride; self->classLoaderOverride = classLoader; oldStatus = dvmChangeStatus(self, THREAD_NATIVE); if (gDvm.verboseJni) { // 字符串[Calling JNI_OnLoad for \"%s\"]可以作为查找system/lib/libdvm.so中JNI_OnLoad函数调用地址的依据 ALOGI("[Calling JNI_OnLoad for \"%s\"]", pathName); } // 调用so库文件中的导出函数JNI_OnLoad version = (*func)(gDvmJni.jniVm, NULL); dvmChangeStatus(self, oldStatus); self->classLoaderOverride = prevOverride; if (version == JNI_ERR) { *detail = strdup(StringPrintf("JNI_ERR returned from JNI_OnLoad in \"%s\"", pathName).c_str()); } else if (dvmIsBadJniVersion(version)) { *detail = strdup(StringPrintf("Bad JNI version returned from JNI_OnLoad in \"%s\": %d", pathName, version).c_str()); /* * It's unwise to call dlclose() here, but we can mark it * as bad and ensure that future load attempts will fail. * * We don't know how far JNI_OnLoad got, so there could * be some partially-initialized stuff accessible through * newly-registered native method calls. We could try to * unregister them, but that doesn't seem worthwhile. */ } else { result = true; } if (gDvm.verboseJni) { ALOGI("[Returned %s from JNI_OnLoad for \"%s\"]", (result ? "successfully" : "failure"), pathName); } } if (result) pNewEntry->onLoadResult = kOnLoadOkay; else pNewEntry->onLoadResult = kOnLoadFailed; pNewEntry->onLoadThreadId = 0; /* * Broadcast a wakeup to anybody sleeping on the condition variable. */ dvmLockMutex(&pNewEntry->onLoadLock); pthread_cond_broadcast(&pNewEntry->onLoadCond); dvmUnlockMutex(&pNewEntry->onLoadLock); return result; } }
http://blog.csdn.net/luoshengyang/article/details/8923483
http://blog.csdn.net/myarrow/article/details/9718677
http://www.cnblogs.com/vendanner/p/4979177.html
http://bbs.pediy.com/showthread.php?t=211764
五、在.init和.init_array段的函数上下断点(基于Android4.4.4版本)
方法一:在上面已经分析了.init和.init_array段构造函数的执行,很显然我们想在.init和.init_array段构造函数上下断点也必须根据这些执行的流程来。由于Android系统的/system/bin/linker文件中上面提到的很多so库文件加载过程的函数没有被导出设置为隐藏,在进行so库文件的动态调试后不好通过查找关键流程函数的方法来查找.init和.init_array段构造函数。根据.init和.init_array段构造函数的调用的特点,最终的构造函数的调用都是在CallFunction函数并且在调用.init和.init_array段构造函数之前有明显的特征字符串 [ Calling %s @ %p for '%s' ],因此我们使用IDA工具,通过在/system/bin/linker文件中搜索特征字符串[ Calling %s @ %p for '%s' ] 来查找到 .init和.init_array段构造函数调用的地方。
将手机设备中的/system/bin/linker文件导出来,拖入到IDA中进行分析
adb pull /system/bin/linker
通过IDA工具在/system/bin/linker文件中,查找特征字符串 [
Calling %s @ %p for '%s' ]
根据字符串 [ Calling %s @ %p for '%s' ] 引用查询到.init和.init_array段构造函数调用的代码调用位置即 0x0000274C BLX R4处,0x0000274C即为.init和.init_array段构造函数调用地址(RVA)。
再开一个IDA对该so库文件进行Android应用的附加调试,设置IDA调试时断在so库文件加载的位置,更保险的方法就是 在system/lib/libdvm.so库文件的导出函数dvmLoadNativeCode()处下断点 ,然后通过IDA工具获取/system/bin/linker的模块加载基址linker_base(RA),因此 inker_base+0x0000274C 即为.init和.init_array段构造函数被调用的位置(VA),在此处下断点F7跟进 即可进入.init和.init_array段构造函数的实际调用地址VA处,实现监控.init和.init_array段构造函数的代码行为。
这里就不动态调试操作了,直接网上借一张图片显示效果,下面图即为.init和.init_array段构造函数被调用的位置, F7 跟进进行分析即可:
方法二:使用作者无名侠 【原创】执行视图
解析init_array 提供的工具,静态的解析so库文件的可执行试图,获取到.init_array段构造函数的调用地址(不是被调用的位置)的相对虚拟地址偏移fun_rva,加上该so模块加载基址so_base即 so_base+fun_rva
即为.init_array段构造函数的直接函数调用地址VA。代码下载地址为:https://github.com/Chenyuxin/elf_initarray.git。
/* Code By:无名侠 */ #include <stdio.h> #include <elf.h> #include <fcntl.h> #include <stdlib.h> #include <string.h> #include <unistd.h> /*** * * 需要注意的是Elf32_Dyn中解析出的init_array 地址是RVA, * 有些时候段装载地址可能和文件偏移不同(也就是p_vaddr!= p_offset), * 如果想直接从文件解析该数组需要做转换.转换方法是查表. * ***/ // 将相对地址偏移RVA转换为elf文件的文件偏移FA Elf32_Addr VaToFa(int fd,Elf32_Addr rva) { /*顾名思义 fd - 打开的so文件句柄 rva - 欲转换的地址 return - rva的文件偏移 */ int old; int pnum; Elf32_Ehdr ehdr; Elf32_Addr result; old = lseek(fd, 0, SEEK_CUR); lseek(fd, 0, SEEK_SET); read(fd,&ehdr,sizeof(Elf32_Ehdr)); pnum = ehdr.e_phnum; result = rva; for(int i = 0; i < pnum; i++) { Elf32_Phdr phdr; read(fd,&phdr, sizeof(Elf32_Phdr)); if(rva >= phdr.p_vaddr && rva < phdr.p_vaddr+phdr.p_memsz) result = rva-phdr.p_vaddr+phdr.p_offset; } lseek(fd,old,SEEK_SET); return result; } // elf可执行程序的主函数 int main(int argc, char const *argv[]) { int fp; Elf32_Ehdr ehdr; int phnum; // 对输入的函数参数的个数进行校验 if(argc!=2) { printf("Please input elf file!\n"); return -1; } // 打开静态的so文件 fp = open(argv[1], O_RDONLY); if(!fp) { printf("error:can't open %s \n",argv[1] ); return -1; } // 读取elf32文件的文件头 read(fp, &ehdr,sizeof(Elf32_Ehdr)); // 对文件的格式进行简单的判断 if(memcmp(ehdr.e_ident, ELFMAG, SELFMAG)) { printf("bad magic.\n"); close(fp); return -1; } // 获取elf文件中程序头表的个数 phnum = ehdr.e_phnum; // 遍历程序头表 for(int i = 0; i < phnum; i++) { Elf32_Phdr phdr; // elf文件的文件头的后面就是elf文件的程序头表 // 读取elf文件的程序头表 read(fp, &phdr,sizeof(Elf32_Phdr)); // 对程序头表保存的数据的类型是否为.dynamic段 if(phdr.p_type==PT_DYNAMIC) { Elf32_Dyn dyn; Elf32_Addr initaddr; Elf32_Word initsize; // 该程序段为PT_DYNAMIC类型的.dynamic段 int cnt = 0; // 打印该程序段在elf文件中文件偏移RVA printf("offset : %x\n",phdr.p_offset); // 设置文件的偏移,定位到该程序的文件内容处 lseek(fp,phdr.p_offset, SEEK_SET); // 该程序段的实际数据为多个Elf32_Dyn结构体 // 遍历该程序段的Elf32_Dyn结构体查找到.init_array段 do { // 读取Elf32_Dyn结构体的数据 read(fp,&dyn,sizeof(Elf32_Dyn)); // 判断Elf32_Dyn结构体保存的数据是否为.init_array段的 if(dyn.d_tag == DT_INIT_ARRAY) // 获取.init段的初始化函数跳转表起始相对地址 initaddr = dyn.d_un.d_ptr; else if(dyn.d_tag == DT_INIT_ARRAYSZ) { // 获取DT_INIT_ARRAY的大小(占用字节数) initsize = dyn.d_un.d_val; break; } } while(dyn.d_tag != DT_NULL); // 获取.init_array段有效初始函数调用地址的个数 initsize/=4; initsize-=1; // 打印.init_array段初始化函数的起始相对地址RVA和初始化函数的个数 printf("INIT ARRAY OFFSET:%x(RVA)\nINTI NUM:%d\ninit table:\n", initaddr, initsize); // 将.init_array段初始化函数的起始相对地址RVA转换为文件偏移的FA initaddr = VaToFa(fp, initaddr); // 定位到elf文件的保存.init_array段初始化函数位置 lseek(fp, initaddr, SEEK_SET); // 遍历读取.init_array段初始化函数的相对调用地址RVA for(int i = 0;i < initsize;i++) { Elf32_Addr fun; // 读取.init_array段的初始函数的相对调用地址 read(fp, &fun, 4); // 打印读取到的.init_array段的初始函数的相对调用地址 printf("fun %d :%x\n", i, fun); } } } return 0; }
作者无名侠的代码使用方法以及测试:
pandaos@pandaos:~/elf1$ gcc main.cpp -o elf1 pandaos@pandaos:~/elf1$ ./elf1 libdanmu.so offset : 1399f0 INIT ARRAY OFFSET:13a9c0(RVA) INTI NUM:11 init table: fun 0 :9eb9 fun 1 :9fa9 fun 2 :a099 fun 3 :a1bd fun 4 :a2e1 fun 5 :a815 fun 6 :a895 fun 7 :a8d1 fun 8 :a8e1 fun 9 :a9bd fun 10 :aa99 pandaos@pandaos:~/elf1$
.init_array段构造函数的调用地址的RVA获取到了,只要通过 方法一 中的IDA调试so库的方法获取到该.init_array段所在so文件的内存加载基址 so_base ,因此 so_base+.init_array段构造函数的调用地址的RVA 即为.init_array段构造函数的调用地址的VA也就是.init_array段构造函数的动态实际调用地址,我们只要在这个地址处下断点即可。
感谢连接:
http://bbs.pediy.com/showthread.php?t=212374
https://github.com/Chenyuxin/elf_initarray.git
六、在so库文件的JNI_OnLoad上下断点(基于Android4.4.4版本的Dalvik模式)
方法一:由于JNI_OnLoad函数在被调用时是在函数dvmLoadNativeCode()中,并且JNI_OnLoad函数在被调用时也有特征字符串,如 [Calling JNI_OnLoad for \"%s\"] 和 "JNI_OnLoad" 等根据自己的喜欢选一个就行。因此,我们可以将手机设备中的system/lib/libdvm.so文件导出来,拖到IDA中进行分析,然后使用特征字符串搜索的方法进行定位。
adb pull system/lib/libdvm.so
详细的步骤可以参考作者【原创】JNI_OnLoad与init_array下断方法整理 的帖子
方法二:前面的作者可能是已经被特征字符串搜索的方法思维定式了,其实在JNI_OnLoad上下断点很容易的,不需要这么麻烦。
adb
pull system/lib/libdvm.so将Android手机设备的libdvm.so文件导出来,拖到IDA中进行分析,可以发现libdvm.so库文件中 dvmLoadNativeCode() 是导出的,意味着我们在使用IDA动态调试so库文件时,可以在函数dvmLoadNativeCode()上下断点,很高兴的是JNI_OnLoad函数的调用就是在函数dvmLoadNativeCode()中,因此通过 _Z17dvmLoadNativeCodePKcP6ObjectPPc
即dvmLoadNativeCode()函数就可以定位到JNI_OnLoad函数的调用的位置。
通过 _Z17dvmLoadNativeCodePKcP6ObjectPPc
即dvmLoadNativeCode()函数就可以定位到JNI_OnLoad函数的调用的位置(这里是静态的查找示意图,动态查找的方法一样,等目标App应用的so库文件加载了,然后在动态加载的system/lib/libdvm.so中查找 _Z17dvmLoadNativeCodePKcP6ObjectPPc
函数,然后在函数_Z17dvmLoadNativeCodePKcP6ObjectPPc中查找到JNI_OnLoad函数的调用位置[ BLX R8 ]),F7 跟进JNI_OnLoad函数的实现即可分析JNI_OnLoad函数的代码行为。
这里给出的实例是Dalvik模式下的,Art模式下在JNI_OnLoad函数上下断点方法一样。
七、在Android
so文件的.init、.init_array上和JNI_OnLoad处下断点的方法总结
由用于调试的Android设备的Androd系统的版本,找到该Android系统版本对应的Android源码,查看和弄明白.init、.init_array和JNI_OnLoad的执行流程和原理,找到能用于搜索的有效特征字符串,导出用于调试的Android设备的Androd系统的/system/bin/linker文件、system/lib/libdvm.so或system/lib/libartso文件,使用IDA工具进行分析,通过前面的特征字符串搜索找到.init、.init_array和JNI_OnLoad被调用位置的RVA,然后IDA调试so获取相应的system/lib/libdvm.so或system/lib/libartso文件的动态内存加载基址linker_base、libdvm_base或者libartso_base,因此IDA动态调试时.init、.init_array被调用的位置VA为 linker_base+RVA;JNI_OnLoad被调用的位置的VA为 libdvm_base或者libartso_base + RVA,我们在动态调试分析的时候,只要在这两个关键点处下断点即可。
感谢连接:
http://blog.csdn.net/luoshengyang/article/details/8923483
http://blog.csdn.net/myarrow/article/details/9718677
http://blog.chinaunix.net/uid-1835494-id-2831799.html
http://bbs.pediy.com/showthread.php?t=211764
http://bbs.pediy.com/showthread.php?t=212374
http://www.ibm.com/developerworks/cn/linux/l-elf/part1/
http://bbs.pediy.com/showthread.php?p=1365423
http://www.blogfshare.com/linker-load-so.html
http://www.cnblogs.com/vendanner/p/4979177.html
https://github.com/Chenyuxin/elf_initarray