Quantcast
Channel: CSDN博客移动开发推荐文章
Viewing all articles
Browse latest Browse all 5930

【Android图像处理】图像处理之-素描效果

$
0
0

  这个素描滤镜的算法我是在网上找到的,具体的链接和作者信息忘记了。(侵权则删)

	/**
	 * 素描效果
	 * @param bmp
	 * @return
	 */
	public static Bitmap convertToSketch(Bitmap bmp) {
		int pos, row, col, clr;
		int width = bmp.getWidth();
		int height = bmp.getHeight();
		int[] pixSrc = new int[width * height];
		int[] pixNvt = new int[width * height];
		// 先对图象的像素处理成灰度颜色后再取反
		bmp.getPixels(pixSrc, 0, width, 0, 0, width, height);
		for (row = 0; row < height; row++) {
			for (col = 0; col < width; col++) {
				pos = row * width + col;
				pixSrc[pos] = (Color.red(pixSrc[pos])
						+ Color.green(pixSrc[pos]) + Color.blue(pixSrc[pos])) / 3;
				pixNvt[pos] = 255 - pixSrc[pos];
			}
		}
		// 对取反的像素进行高斯模糊, 强度可以设置,暂定为5.0
		gaussGray(pixNvt, 5.0, 5.0, width, height);
		// 灰度颜色和模糊后像素进行差值运算
		for (row = 0; row < height; row++) {
			for (col = 0; col < width; col++) {
				pos = row * width + col;
				clr = pixSrc[pos] << 8;
				clr /= 256 - pixNvt[pos];
				clr = Math.min(clr, 255);
				pixSrc[pos] = Color.rgb(clr, clr, clr);
			}
		}
		bmp.setPixels(pixSrc, 0, width, 0, 0, width, height);
		return bmp;
	}
	private static int gaussGray(int[] psrc, double horz, double vert,
			int width, int height) {
		int[] dst, src;
		double[] n_p, n_m, d_p, d_m, bd_p, bd_m;
		double[] val_p, val_m;
		int i, j, t, k, row, col, terms;
		int[] initial_p, initial_m;
		double std_dev;
		int row_stride = width;
		int max_len = Math.max(width, height);
		int sp_p_idx, sp_m_idx, vp_idx, vm_idx;
		val_p = new double[max_len];
		val_m = new double[max_len];
		n_p = new double[5];
		n_m = new double[5];
		d_p = new double[5];
		d_m = new double[5];
		bd_p = new double[5];
		bd_m = new double[5];
		src = new int[max_len];
		dst = new int[max_len];
		initial_p = new int[4];
		initial_m = new int[4];
		// 垂直方向
		if (vert > 0.0) {
			vert = Math.abs(vert) + 1.0;
			std_dev = Math.sqrt(-(vert * vert) / (2 * Math.log(1.0 / 255.0)));
			// 初试化常量
			findConstants(n_p, n_m, d_p, d_m, bd_p, bd_m, std_dev);
			for (col = 0; col < width; col++) {
				for (k = 0; k < max_len; k++) {
					val_m[k] = val_p[k] = 0;
				}
				for (t = 0; t < height; t++) {
					src[t] = psrc[t * row_stride + col];
				}
				sp_p_idx = 0;
				sp_m_idx = height - 1;
				vp_idx = 0;
				vm_idx = height - 1;
				initial_p[0] = src[0];
				initial_m[0] = src[height - 1];
				for (row = 0; row < height; row++) {
					terms = (row < 4) ? row : 4;
					for (i = 0; i <= terms; i++) {
						val_p[vp_idx] += n_p[i] * src[sp_p_idx - i] - d_p[i]
								* val_p[vp_idx - i];
						val_m[vm_idx] += n_m[i] * src[sp_m_idx + i] - d_m[i]
								* val_m[vm_idx + i];
					}
					for (j = i; j <= 4; j++) {
						val_p[vp_idx] += (n_p[j] - bd_p[j]) * initial_p[0];
						val_m[vm_idx] += (n_m[j] - bd_m[j]) * initial_m[0];
					}
					sp_p_idx++;
					sp_m_idx--;
					vp_idx++;
					vm_idx--;
				}
				transferGaussPixels(val_p, val_m, dst, 1, height);
				for (t = 0; t < height; t++) {
					psrc[t * row_stride + col] = dst[t];
				}
			}
		}
		// 水平方向
		if (horz > 0.0) {
			horz = Math.abs(horz) + 1.0;
			if (horz != vert) {
				std_dev = Math.sqrt(-(horz * horz)
						/ (2 * Math.log(1.0 / 255.0)));
				// 初试化常量
				findConstants(n_p, n_m, d_p, d_m, bd_p, bd_m, std_dev);
			}
			for (row = 0; row < height; row++) {
				for (k = 0; k < max_len; k++) {
					val_m[k] = val_p[k] = 0;
				}
				for (t = 0; t < width; t++) {
					src[t] = psrc[row * row_stride + t];
				}
				sp_p_idx = 0;
				sp_m_idx = width - 1;
				vp_idx = 0;
				vm_idx = width - 1;
				initial_p[0] = src[0];
				initial_m[0] = src[width - 1];
				for (col = 0; col < width; col++) {
					terms = (col < 4) ? col : 4;
					for (i = 0; i <= terms; i++) {
						val_p[vp_idx] += n_p[i] * src[sp_p_idx - i] - d_p[i]
								* val_p[vp_idx - i];
						val_m[vm_idx] += n_m[i] * src[sp_m_idx + i] - d_m[i]
								* val_m[vm_idx + i];
					}
					for (j = i; j <= 4; j++) {
						val_p[vp_idx] += (n_p[j] - bd_p[j]) * initial_p[0];
						val_m[vm_idx] += (n_m[j] - bd_m[j]) * initial_m[0];
					}
					sp_p_idx++;
					sp_m_idx--;
					vp_idx++;
					vm_idx--;
				}
				transferGaussPixels(val_p, val_m, dst, 1, width);
				for (t = 0; t < width; t++) {
					psrc[row * row_stride + t] = dst[t];
				}
			}
		}
		return 0;
	}
	private static void transferGaussPixels(double[] src1, double[] src2,
			int[] dest, int bytes, int width) {
		int i, j, k, b;
		int bend = bytes * width;
		double sum;
		i = j = k = 0;
		for (b = 0; b < bend; b++) {
			sum = src1[i++] + src2[j++];
			if (sum > 255)
				sum = 255;
			else if (sum < 0)
				sum = 0;
			dest[k++] = (int) sum;
		}
	}
	private static void findConstants(double[] n_p, double[] n_m, double[] d_p,
			double[] d_m, double[] bd_p, double[] bd_m, double std_dev) {
		double div = Math.sqrt(2 * 3.141593) * std_dev;
		double x0 = -1.783 / std_dev;
		double x1 = -1.723 / std_dev;
		double x2 = 0.6318 / std_dev;
		double x3 = 1.997 / std_dev;
		double x4 = 1.6803 / div;
		double x5 = 3.735 / div;
		double x6 = -0.6803 / div;
		double x7 = -0.2598 / div;
		int i;
		n_p[0] = x4 + x6;
		n_p[1] = (Math.exp(x1)
				* (x7 * Math.sin(x3) - (x6 + 2 * x4) * Math.cos(x3)) + Math
				.exp(x0) * (x5 * Math.sin(x2) - (2 * x6 + x4) * Math.cos(x2)));
		n_p[2] = (2
				* Math.exp(x0 + x1)
				* ((x4 + x6) * Math.cos(x3) * Math.cos(x2) - x5 * Math.cos(x3)
						* Math.sin(x2) - x7 * Math.cos(x2) * Math.sin(x3)) + x6
				* Math.exp(2 * x0) + x4 * Math.exp(2 * x1));
		n_p[3] = (Math.exp(x1 + 2 * x0)
				* (x7 * Math.sin(x3) - x6 * Math.cos(x3)) + Math.exp(x0 + 2
						* x1)
				* (x5 * Math.sin(x2) - x4 * Math.cos(x2)));
		n_p[4] = 0.0;
		d_p[0] = 0.0;
		d_p[1] = -2 * Math.exp(x1) * Math.cos(x3) - 2 * Math.exp(x0)
				* Math.cos(x2);
		d_p[2] = 4 * Math.cos(x3) * Math.cos(x2) * Math.exp(x0 + x1)
				+ Math.exp(2 * x1) + Math.exp(2 * x0);
		d_p[3] = -2 * Math.cos(x2) * Math.exp(x0 + 2 * x1) - 2 * Math.cos(x3)
				* Math.exp(x1 + 2 * x0);
		d_p[4] = Math.exp(2 * x0 + 2 * x1);
		for (i = 0; i <= 4; i++) {
			d_m[i] = d_p[i];
		}
		n_m[0] = 0.0;
		for (i = 1; i <= 4; i++) {
			n_m[i] = n_p[i] - d_p[i] * n_p[0];
		}
		double sum_n_p, sum_n_m, sum_d;
		double a, b;
		sum_n_p = 0.0;
		sum_n_m = 0.0;
		sum_d = 0.0;
		for (i = 0; i <= 4; i++) {
			sum_n_p += n_p[i];
			sum_n_m += n_m[i];
			sum_d += d_p[i];
		}
		a = sum_n_p / (1.0 + sum_d);
		b = sum_n_m / (1.0 + sum_d);
		for (i = 0; i <= 4; i++) {
			bd_p[i] = d_p[i] * a;
			bd_m[i] = d_m[i] * b;
		}
	}
其效果如下:

                   效果图                                                 原图



作者:qq_32353771 发表于2017/1/5 19:45:25 原文链接
阅读:51 评论:0 查看评论

Viewing all articles
Browse latest Browse all 5930

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>