这个素描滤镜的算法我是在网上找到的,具体的链接和作者信息忘记了。(侵权则删)
/** * 素描效果 * @param bmp * @return */ public static Bitmap convertToSketch(Bitmap bmp) { int pos, row, col, clr; int width = bmp.getWidth(); int height = bmp.getHeight(); int[] pixSrc = new int[width * height]; int[] pixNvt = new int[width * height]; // 先对图象的像素处理成灰度颜色后再取反 bmp.getPixels(pixSrc, 0, width, 0, 0, width, height); for (row = 0; row < height; row++) { for (col = 0; col < width; col++) { pos = row * width + col; pixSrc[pos] = (Color.red(pixSrc[pos]) + Color.green(pixSrc[pos]) + Color.blue(pixSrc[pos])) / 3; pixNvt[pos] = 255 - pixSrc[pos]; } } // 对取反的像素进行高斯模糊, 强度可以设置,暂定为5.0 gaussGray(pixNvt, 5.0, 5.0, width, height); // 灰度颜色和模糊后像素进行差值运算 for (row = 0; row < height; row++) { for (col = 0; col < width; col++) { pos = row * width + col; clr = pixSrc[pos] << 8; clr /= 256 - pixNvt[pos]; clr = Math.min(clr, 255); pixSrc[pos] = Color.rgb(clr, clr, clr); } } bmp.setPixels(pixSrc, 0, width, 0, 0, width, height); return bmp; } private static int gaussGray(int[] psrc, double horz, double vert, int width, int height) { int[] dst, src; double[] n_p, n_m, d_p, d_m, bd_p, bd_m; double[] val_p, val_m; int i, j, t, k, row, col, terms; int[] initial_p, initial_m; double std_dev; int row_stride = width; int max_len = Math.max(width, height); int sp_p_idx, sp_m_idx, vp_idx, vm_idx; val_p = new double[max_len]; val_m = new double[max_len]; n_p = new double[5]; n_m = new double[5]; d_p = new double[5]; d_m = new double[5]; bd_p = new double[5]; bd_m = new double[5]; src = new int[max_len]; dst = new int[max_len]; initial_p = new int[4]; initial_m = new int[4]; // 垂直方向 if (vert > 0.0) { vert = Math.abs(vert) + 1.0; std_dev = Math.sqrt(-(vert * vert) / (2 * Math.log(1.0 / 255.0))); // 初试化常量 findConstants(n_p, n_m, d_p, d_m, bd_p, bd_m, std_dev); for (col = 0; col < width; col++) { for (k = 0; k < max_len; k++) { val_m[k] = val_p[k] = 0; } for (t = 0; t < height; t++) { src[t] = psrc[t * row_stride + col]; } sp_p_idx = 0; sp_m_idx = height - 1; vp_idx = 0; vm_idx = height - 1; initial_p[0] = src[0]; initial_m[0] = src[height - 1]; for (row = 0; row < height; row++) { terms = (row < 4) ? row : 4; for (i = 0; i <= terms; i++) { val_p[vp_idx] += n_p[i] * src[sp_p_idx - i] - d_p[i] * val_p[vp_idx - i]; val_m[vm_idx] += n_m[i] * src[sp_m_idx + i] - d_m[i] * val_m[vm_idx + i]; } for (j = i; j <= 4; j++) { val_p[vp_idx] += (n_p[j] - bd_p[j]) * initial_p[0]; val_m[vm_idx] += (n_m[j] - bd_m[j]) * initial_m[0]; } sp_p_idx++; sp_m_idx--; vp_idx++; vm_idx--; } transferGaussPixels(val_p, val_m, dst, 1, height); for (t = 0; t < height; t++) { psrc[t * row_stride + col] = dst[t]; } } } // 水平方向 if (horz > 0.0) { horz = Math.abs(horz) + 1.0; if (horz != vert) { std_dev = Math.sqrt(-(horz * horz) / (2 * Math.log(1.0 / 255.0))); // 初试化常量 findConstants(n_p, n_m, d_p, d_m, bd_p, bd_m, std_dev); } for (row = 0; row < height; row++) { for (k = 0; k < max_len; k++) { val_m[k] = val_p[k] = 0; } for (t = 0; t < width; t++) { src[t] = psrc[row * row_stride + t]; } sp_p_idx = 0; sp_m_idx = width - 1; vp_idx = 0; vm_idx = width - 1; initial_p[0] = src[0]; initial_m[0] = src[width - 1]; for (col = 0; col < width; col++) { terms = (col < 4) ? col : 4; for (i = 0; i <= terms; i++) { val_p[vp_idx] += n_p[i] * src[sp_p_idx - i] - d_p[i] * val_p[vp_idx - i]; val_m[vm_idx] += n_m[i] * src[sp_m_idx + i] - d_m[i] * val_m[vm_idx + i]; } for (j = i; j <= 4; j++) { val_p[vp_idx] += (n_p[j] - bd_p[j]) * initial_p[0]; val_m[vm_idx] += (n_m[j] - bd_m[j]) * initial_m[0]; } sp_p_idx++; sp_m_idx--; vp_idx++; vm_idx--; } transferGaussPixels(val_p, val_m, dst, 1, width); for (t = 0; t < width; t++) { psrc[row * row_stride + t] = dst[t]; } } } return 0; } private static void transferGaussPixels(double[] src1, double[] src2, int[] dest, int bytes, int width) { int i, j, k, b; int bend = bytes * width; double sum; i = j = k = 0; for (b = 0; b < bend; b++) { sum = src1[i++] + src2[j++]; if (sum > 255) sum = 255; else if (sum < 0) sum = 0; dest[k++] = (int) sum; } } private static void findConstants(double[] n_p, double[] n_m, double[] d_p, double[] d_m, double[] bd_p, double[] bd_m, double std_dev) { double div = Math.sqrt(2 * 3.141593) * std_dev; double x0 = -1.783 / std_dev; double x1 = -1.723 / std_dev; double x2 = 0.6318 / std_dev; double x3 = 1.997 / std_dev; double x4 = 1.6803 / div; double x5 = 3.735 / div; double x6 = -0.6803 / div; double x7 = -0.2598 / div; int i; n_p[0] = x4 + x6; n_p[1] = (Math.exp(x1) * (x7 * Math.sin(x3) - (x6 + 2 * x4) * Math.cos(x3)) + Math .exp(x0) * (x5 * Math.sin(x2) - (2 * x6 + x4) * Math.cos(x2))); n_p[2] = (2 * Math.exp(x0 + x1) * ((x4 + x6) * Math.cos(x3) * Math.cos(x2) - x5 * Math.cos(x3) * Math.sin(x2) - x7 * Math.cos(x2) * Math.sin(x3)) + x6 * Math.exp(2 * x0) + x4 * Math.exp(2 * x1)); n_p[3] = (Math.exp(x1 + 2 * x0) * (x7 * Math.sin(x3) - x6 * Math.cos(x3)) + Math.exp(x0 + 2 * x1) * (x5 * Math.sin(x2) - x4 * Math.cos(x2))); n_p[4] = 0.0; d_p[0] = 0.0; d_p[1] = -2 * Math.exp(x1) * Math.cos(x3) - 2 * Math.exp(x0) * Math.cos(x2); d_p[2] = 4 * Math.cos(x3) * Math.cos(x2) * Math.exp(x0 + x1) + Math.exp(2 * x1) + Math.exp(2 * x0); d_p[3] = -2 * Math.cos(x2) * Math.exp(x0 + 2 * x1) - 2 * Math.cos(x3) * Math.exp(x1 + 2 * x0); d_p[4] = Math.exp(2 * x0 + 2 * x1); for (i = 0; i <= 4; i++) { d_m[i] = d_p[i]; } n_m[0] = 0.0; for (i = 1; i <= 4; i++) { n_m[i] = n_p[i] - d_p[i] * n_p[0]; } double sum_n_p, sum_n_m, sum_d; double a, b; sum_n_p = 0.0; sum_n_m = 0.0; sum_d = 0.0; for (i = 0; i <= 4; i++) { sum_n_p += n_p[i]; sum_n_m += n_m[i]; sum_d += d_p[i]; } a = sum_n_p / (1.0 + sum_d); b = sum_n_m / (1.0 + sum_d); for (i = 0; i <= 4; i++) { bd_p[i] = d_p[i] * a; bd_m[i] = d_m[i] * b; } }其效果如下:
效果图 原图
作者:qq_32353771 发表于2017/1/5 19:45:25 原文链接
阅读:51 评论:0 查看评论